
������������	
	����
	��������
�
���
���
�	��

�	
��	���������������
�
�����	�	

��
��	���
� �
�������!	����	"���#��"����$%%$

���
��	"�����
�
 &'���	���
�"���������	��	��		�����	
��	�����������	���������

()�'�
	�
��
���	�*	"���'	
�������'" �	�����	
�	#�+
�,	�
��-����* ���'�

.������
�/�01#231

�&
�����

Parsing is the process of deriving structure from sentences in a given language. This structure is derived

from a specification of the language defined by a formal grammar. Many different types of grammar

exist, but those most often used in the field of computer science are known as context-free (CF)

grammars. The LR parsing technique can be used to efficiently parse a large class of unambiguous CF

grammars. However, many languages can only be specified using ambiguous grammars. These include

natural language (NL) grammars, as well as a host of simpler grammars. Tomita (85) proposed an

extension to LR parsing known as generalised LR (GLR) parsing which allows languages derived from

ambiguous CF grammars to be parsed efficiently.

The project implements a version of Tomita’s algorithm in the functional programming language Haskell

and integrates it with the Haskell-based LR parser-generator tool Happy. The amendments to Happy

allow it to generate a GLR parser, based on Tomita’s algorithm, capable of parsing languages derived

from ambiguous CF grammars. Our implementation of Tomita’s algorithm is analysed both theoretically

(time and space orders) and through the use of Haskell profiling tools.

��&�	������
�	
�

���0���4
���� ����
 ��0

1.1 Introduction to Parsing... 1
1.1.1 Language, Grammar and Syntax...1
1.1.2 LR Parsing...3
1.1.3 Ambiguous Grammars ..6
1.1.4 Generalised LR (GLR) Parsing ...8
1.1.5 Tomita’s Algorithm...8

1.2 Introduction to Haskell... 8
1.2.1 Functional Programming...8
1.2.2 Functions ...9
1.2.3 Types ...9
1.2.4 Higher Order Functions...10
1.2.5 Comments ...10

1.3 Project objectives ... 11
1.3.1 Implementation of Tomita’s Algorithm ..11
1.3.2 Integration with Happy..11
1.3.3 Analysis and Evaluation..11
1.3.4 Other Possibilities ...11
1.3.5 Overall Objectives...11

1.4 Project deliverables .. 12
1.4.1 Basic..12
1.4.2 Intermediate...12
1.4.3 Advanced...12

1.5 Project plan... 12
1.5.1 Activity graph..12
1.5.2 Time Management Plan ..13

1.6 Report ... 14

���$���������
���
�����	��� �	�� �,	-���������������������������������������03

2.1 LR Parsing.. 15
2.2 Ambiguous Grammars, GLR Parsing and Tomita... 16

2.2.1 Ambiguous Grammar Parsing...16
2.2.2 GLR Parsing and Tomita’s Algorithm..16

2.3 NL Parsing ... 17
2.4 Forest Processing ... 17

2.4.1 Semantic Processing..18
2.4.2 Malformation Handling...18

2.5 Haskell.. 18
2.5.1 Evaluation, Interpretation and Compilation ..18
2.5.2 Monads..19
2.5.3 Profiling...20

���5��*	
��
���$0

3.1 Tomita’s Algorithm – Traditional Approach... 21
3.1.1 Parse Forest Structure ...21
3.1.2 GSS Structure (Traditional) ..23
3.1.3 GSS Operations (Traditional)..23
3.1.4 GSS Example (Traditional) ...24

3.2 Tomita’s Algorithm – Functional Approach.. 27
3.2.1 Forest Structure (Functional Model) ...27
3.2.2 GSS Structure (Functional Model)..28
3.2.3 GSS Operations (Functional Model)...29
3.2.4 GSS Example (Functional Model) ..30

3.3 High-Level Structure.. 32
3.3.1 State Handling...32
3.3.2 Driving the Parser ...32
3.3.3 Error Handling ..35

3.4 Integration with Happy .. 36
3.4.1 Analysis of Happy ...36
3.4.2 Integration of GLR component ...38
3.4.3 Transparency ...38

���6��4'"�	'	
�����
 ��6%

4.1 Parse Forest Data Type .. 40
4.1.1 ForestNode and SetMap Structure ..40
4.1.2 SetMap Operations..41

4.2 TStack Data Type... 42
4.2.1 TStack Structure..42
4.2.2 TStack Operations...43

4.3 High-Level Implementation... 44
4.3.1 State Handling – Monadic Structure ...44
4.3.2 Parser Driver ...45
4.3.3 Error Handling ..48

4.4 Optimisation... 49
4.5 Modifications to Happy ... 51

4.5.1 High Level Modification...51
4.5.2 GLR Code Generation...51

4.6 Forest Decoding ... 53

���3���	
 ��
��
��(,�� ����
���33

5.1 Generating a Parser Using HappyGLR .. 55
5.2 Output – daVinci .. 56
5.3 Results .. 56

5.3.1 E+E Grammar ...56
5.3.2 Simple NL Grammar...59

5.4 Evaluation .. 65
5.4.1 Correctness..65
5.4.2 Efficiency ..67

5.4.2.1 Time Complexity ...67
5.4.2.2 Space Complexity ..70

5.4.3 Profiling...71
5.4.3.1 Cost Centre Profiling ...71
5.4.3.2 Heap Profiling..73

5.4.4 Comparisons..75
5.4.4.1 C Version ...76
5.4.4.2 Ljunglöf ...77

���7����
��
��

��12

6.1 Project Achievements .. 78
6.1.1 Implementation of Tomita’s Algorithm in Haskell ...78
6.1.2 Integration with Happy..78
6.1.3 Analysis and Evaluation..78
6.1.4 Further Possibilities...78

6.2 Overall Success .. 79
6.2.1 Implementation Correctness, Efficiency and Maintainability...79
6.2.2 Analysis and Evaluation..80
6.2.3 Integration with Happy..80

6.3 Future Developments ... 80
6.4 Concluding Remarks.. 81

��&�	����8�� �	

Grammar 1.1: Formal grammar ...2
Grammar 1.2: Simple LR(1) grammar ...4
Table 1.3: LR parse table for Grammar 1.2..4
Figure 1.4: Shift-reduce parse of input string ‘i + i * i’ ..5
Grammar 1.5: Simple ambiguous grammar...7
Table 1.6: LR parse table for Grammar 1.5..7
Figure 1.7: Project activity graph..13
Table 1.8: Time management plan...13
Figure 2.1: Chain of monadic actions ..19
Figure 3.1: Identical structure in syntax trees ..22
Figure 3.2: Parse forest structure...23
Figure 3.3: Traditional GSS example ...26
Figure 3.4: Collection of trees stored internally as a DAG ...28
Figure 3.5: Local ambiguity packing in functional GSS model...29
Figure 3.6: Example of tree-collection GSS parse...31
Figure 3.7: Top-level GLR parsing process ...32
Figure 3.8: Necessity for reverse height-ordered reducing and packing ...33
Figure 3.9: GLRAction data type..34
Figure 3.10: Structure of doActions and auxiliary functions ...34
Figure 3.11: Input token structure ..35
Figure 3.12: High-level internal structure of Happy..37
Figure 3.13: Amendment to internal structure of Happy ..38
Figure 4.1: TStack ADT..42
Figure 4.2: Push operation on TStack ...43
Figure 4.3: Merge operation on list of TStacks ..44
Figure 4.4: Breakdown of GLR code generation..52
Figure 4.5: Forest decoding process ...54
Figure 5.1: Input file for E+E grammar...55
Figure 5.2: Parse forest: ‘i+i+i’ (daVinci) ...57
Figure 5.3: Syntax trees: ‘i+i+i’ (daVinci)...57
Figure 5.4: Parse forest:‘i+i+i’ (daVinci) ..58
Figure 5.5: Syntax trees:‘i+i+i+i’ (daVinci) ...58
Figure 5.6: Parse forest: 9+’s (daVinci)...59
Figure 5.7: Parse forest: “I saw a man in the park with a telescope” (daVinci) ..60
Figure 5.8: Syntax trees: “I saw a man in the park with a telescope” (daVinci) ...61
Figure 5.9: Syntactic interpretations of “I saw a man in the park with a telescope”...................................62
Figure 5.10: Parse forest: “I sing loudly and continuously” (daVinci)...63
Figure 5.11: Syntax tree: “I sing loudly and continuously” (daVinci)..63
Figure 5.12: Syntax tree: “she carefully hands him the vase” (daVinci) ..64
Table 5.13: Results of ‘#+ -> #trees’ function..66
Table 5.14: Results of counting generated distinct syntax trees..66
Figure 5.15: Implementation time complexity graph ..69
Figure 5.16: Space complexity – full implementation...70
Figure 5.17: Space complexity – recogniser only ..70
Figure 5.18: Space complexity – memory allocation ...71
Figure 5.19: Cost centre profile before packing optimisation...72
Figure 5.20: Cost centre profile after packing optimisation..72
Figure 5.21: Early implementation heap profile (SimpleNL grammar)...73
Figure 5.22: Improved heap profile (SimpleNL grammar) ...74
Figure 5.23: Heap profile (E+E grammar)..74
Figure 5.24: Heap profile – recogniser (E+E grammar)...75
Table 5.25: Timed execution comparison ..76

CHAPTER 1. INTRODUCTION 1

���0� 4
���� ����

The primary objective of this chapter is to offer an introduction to two project-related topics:

• Parsing – deriving structure from sentences under a specified grammar

• Haskell – a functional programming language

A clear overview of the project objectives will then be supplied, along with the list of project deliverables.

The chapter closes with the project plan and a brief guide to the rest of the report.

0�0 4
���� ����
�������
�
�

0�0�0 ��
� ��	#����''����
���-
��)

Language is a fundamental and universally familiar concept, providing the foundation for

communication. It is also fundamental to the field of computer science. From the earliest days of

research into computational theory scientists have sought ways to express in language what can be

achieved through the use of computational mechanisms. This section discusses the basic linguistic

concepts of language, grammar and syntax.

Grishman [Gri 86] defines the concept of a language as a set of sentences, where each sentence is a string

of one or more symbols (words) from the vocabulary of the language. We should further stipulate that the

string comprising a sentence be of finite length. For example, consider the English language, consisting

of collections of sentences made up of words separated by delimiting punctuation symbols:

Punctuation symbols designate the end of a sentence, and in English may also convey semantic

information about the sentence, i.e. that it is a question or statement.

In a computational language such as Java, we also observe this sentential structure:

Here, the sentences are delimited by the semicolon symbol (;). The vocabulary of the Java language is

the set of all valid symbols, including keywords, identifiers and operators. Note that the semicolon exists

simply to designate the end of the sentence; no further information is implied.

My name is John. I live in England. Where do you live?

int x = 1;
int y = 2;
int z = x + y;

CHAPTER 1. INTRODUCTION 2

We could define our own language by enumerating all of its sentences:

This is a definition of the language L, consisting of the four specified sentences. Note that the symbols a

and b make up the vocabulary of the language. Also note that L consists of a finite number of sentences,

whereas both English and Java consist of an infinite number of sentences. We cannot define a language

of infinite sentences simply by enumerating all of them; therefore we must use another method. Such

languages are commonly defined using formal grammars. Grishman [Gri 86] defines a formal grammar

as a finite, formal specification of a set of sentences (language).

The modern definition of a formal grammar stems mainly from work carried out in the early-to-mid 20th

century, especially by an American linguist called Noam Chomsky who specified a hierarchy of formal

grammars still extensively used today, the Chomsky Hierarchy. A formal grammar consists of a set of

rules (called productions or production rules) defining how valid sentences are to be constructed. For

example, we could redefine our language L using the following grammar:

S and T are known as non-terminals – they do not actually appear in the language itself, but are used to

define intermediate stages in the grammar. a and b are known as terminals or tokens – they comprise the

vocabulary of the language. The second rule is shorthand for two rules: T � a and T � b. The non-

terminal symbol S is the start symbol of the grammar, also known as the sentence constituent. The

grammar states that a valid sentence S in the language is composed of two consecutive non-terminals – T

T, where T is either of the terminals a or b.

The grammar described above is an instance of a context-free grammar. Context-free grammars are

defined in the Chomsky hierarchy as those with production rules of the form:

Where A is a single non-terminal, and α is a list of non-terminals or terminals. Most grammars used in

the field of computer science are context-free. More powerful classes of grammar exist, but are usually

too complex to be parsed efficiently.

A sequence of symbols is a valid sentence in a particular language, specified by its corresponding

grammar, if we can perform a derivation beginning with the sentence constituent (S in the case of

language L) and ending with the original sequence of terminal symbols. A derivation is valid if at each

Grammar 1.1: Formal grammar

L = { “aa” , “ab” , “ba” , “bb” }

S � T T
T � a | b

A � α

CHAPTER 1. INTRODUCTION 3

stage a non-terminal is identified as the left-hand side of a production rule and replaced by the right-hand

side of that rule. For example, consider the following derivation of the sentence “ab” in the language L:

This is known as a leftmost derivation, because at each stage the leftmost non-terminal has been replaced.

A rightmost derivation would appear as follows:

A grammar does more than just provide a convenient means of specifying valid sentences in a particular

language. It also adds structure to the language. This structure is known as syntax. The derivations

shown above could also be represented in tree form. Each node represents a non-terminal in the

grammar, and each leaf represents a terminal:

It is precisely this structure, or syntax, that we are interested in when we carry out parsing. Butler [But

92] defines parsing as the process by which grammatical strings of words are assigned syntactic

structure.

Thus, the process of parsing is concerned with taking ‘flat’ sequences of words in the vocabulary of a

given language, and converting them into richly-structured trees, illuminating the underlying syntax of the

language.

Parsing techniques are divided into two main categories: top-down and bottom-up. A top-down parser

begins with the start symbol of the grammar and tries various sequences of production rules until it ends

up with either an error or a sequence of terminal symbols that matches the input string. A bottom-up

parser scans the input string, looking for patterns of symbols that match the right-hand side of one of the

production rules. Once it has found such a pattern it can replace it with the left-hand side of the

production rule. The parse terminates when either an error has been detected, or the entire input string

has been reduced to the start symbol of the grammar.

0�0�$ ������
�
�

We now consider a particular type of bottom-up parsing technique, known as LR parsing. LR denotes the

fact that the parser scans input from (L)eft-to-right, and that a (R)ightmost derivation is produced. LR

parsers will only succeed on a subclass of the context-free grammars, known as LR grammars. A given

S � T T � a T � a b

S � T T � T b � a b

S

T T

a b

CHAPTER 1. INTRODUCTION 4

CF grammar is LR(k) if it can be parsed by an LR parser with k lookahead tokens, i.e. by looking at the

next k tokens in the input string. In practice k is always ≤ 1. The following is an LR(1) grammar:

In LR parsing, a deterministic finite state automaton (DFA) is pre-computed from the input grammar,

representing all states the parser can be in. The most common method of implementing LR parsing is

known as shift-reduce parsing. It utilises a parse stack, containing symbols from the grammar paired

with state values (representing states in the LR automaton). At each token of input the parser can take

one of four actions:

• shift – remove the token from the input and push it onto the stack, along with a new state.

• reduce – pop a number of states and symbols from the stack, corresponding to the right-hand side of a

production (known as a handle), and replace them with the left-hand side of the production.

• accept – the parse has been successful; terminate

• halt – an error has occurred; terminate

The parse stack is initialised to contain a single value representing the initial state, and parsing either

terminates successfully when all the input has been consumed and the stack contains the initial and final

states along with the start symbol of the grammar, or halts with an error. At each stage, the parser makes

its decisions based on the pre-computed DFA, known as a parse table. Table 1.3 is an example parse

table for Grammar 1.2:

As can be seen from Table 1.3, the parse table is made up of two sections: Action and Goto. The Action

table specifies what must be done when considering a token (terminal of the grammar) from the input

string. It takes a state and a terminal and returns an action.

Grammar 1.2: Simple LR(1) grammar

Table 1.3: LR parse table for Grammar 1.2

E � E + T | T
T � i | T * i

Action Goto
i * + $ E T

0 sh4 5 3
1 sh4 2 3
2 sh6
3 sh7 re2 re2
4 re3 re3 re3
5 sh6 acc
6 sh4 9
7 sh8
8 re4 re4 re4
9 sh7 re1 re1

CHAPTER 1. INTRODUCTION 5

The actions are encoded as follows:

• shN (shift) – shift the input token onto the stack and move into state N.

• reN (reduce) – reduce by production rule N.

• acc (accept) – a successful parse has been found

• no entry (halt) – a parse error has occurred

The Goto table tells the parser what state it should be in after it has reduced by a specific production. It

takes a state and a non-terminal (left-hand side of the reduction rule) and returns a new state.

Notice that the $ symbol, standing for EOF (end of file), appears in the parse table but is not present in the

original grammar (Grammar 1.2). In LR parsing it is customary to augment the original grammar by

adding a rule of the form:

where S’ is an unused grammar symbol, S is the start symbol of the original grammar and $ is the EOF

symbol. In Grammar 1.2, the new rule might be:

All input strings to be parsed are then suffixed with the EOF symbol ($ in this case).

Consider the shift-reduce parse of the input string “i + i * i” using the parse table in Table 1.3

(current input symbol in bold):

Note that the combination of the stack and input (ignoring the state information) on each reduction line in

the parse is a stage in a rightmost derivation of the input. The derivation can be produced by

concatenating these results in reverse:

Figure 1.4: Shift-reduce parse of input string ‘i + i * i’

S’ � S $

E’ � E $

E � E + T � E + T * i � E + i * i � T + i * i � i + i * i

Stack Input Action

0 i + i * i $ shift (4)
0 i 4 + i * i $ reduce (T � i) (goto 3)
0 T 3 + i * i $ reduce (E � T) (goto 5)
0 E 5 + i * i $ shift (6)
0 E 5 + 6 i * i $ shift (4)
0 E 5 + 6 i 4 * i $ reduce (T � i)
0 E 5 + 6 T 9 * i $ shift (7)
0 E 5 + 6 T 9 * 7 i $ shift (8)
0 E 5 + 6 T 9 * 7 i 8 $ reduce (T � T * i) (goto 9)
0 E 5 + 6 T 9 $ reduce (E � E + T) (goto 5)
0 E 5 $ accept

CHAPTER 1. INTRODUCTION 6

The syntax tree associated with the input sentence can be constructed from the derivation:

An issue that has been deliberately avoided thus far is that of constructing parse tables. It is possible to

construct an LR parse table from any context-free grammar. There are a number of popular techniques,

the four main ones being LR(0), SLR(1), LALR(1) and LR(1) (ascending order of strength). A thorough

analysis can be found in [Aho 86].

Sometimes, using a given parse table generation technique will produce a DFA in which one of the states

contains more than one action. If this is the case, we say that the parse table contains a conflict. There are

two types of conflict:

• shift/reduce – either a shift or a reduce action can be taken

• reduce/reduce – one of two different reduce actions can be taken

Note that a shift/shift would correspond to a non-deterministic finite automaton (NDFA) and cannot occur

in practice. See [Aho 86] for further details.

If a parse table that is conflict-free can be generated for a particular grammar using an LR(0) table

generation technique, then we say that the grammar is LR(0). Often stronger techniques can eliminate

conflicts in tables, so that for instance, if an LR(0) technique failed to produce a conflict-free table, an

LALR(1) technique could be tried. If it was successful, then the grammar would be LALR(1) but not

LR(0). The weaker classes of grammars are proper subsets of the stronger classes; for example a

grammar that is SLR(1) is also LR(1).

0�0�5 �'&�� �
����''��

A large class of context-free grammars cannot be parsed deterministically using LR parsing techniques;

i.e. whichever table generation technique is chosen will still result in a parse table with conflicts. Such

grammars are ambiguous. [Gru 00] defines an ambiguous grammar as one that can produce two different

production trees with the same leaves in the same order.

E

E T+

T i
*

i

T

i

CHAPTER 1. INTRODUCTION 7

To illustrate this concept let us consider the following ambiguous grammar along with its LR parse table:

The table contains a shift/reduce conflict (highlighted) in state 6. This occurs because the grammar does

not make clear the associativity of the ‘+’ operator. Thus, for the simple sentence ‘i+i+i’ there are two

ways of associating:

and therefore two possible syntax trees:

It is clear that the leaves of the two trees are identical and in the same order, thus demonstrating the

ambiguity of Grammar 1.5 by the definition above.

In this case it is easy to disambiguate the grammar by adding an associativity rule for the ‘+’ operator.

Precedence and associativity rules are often used to govern the interpretation of sentences containing

operators such as those found in standard arithmetic or various logical languages. For example, a

grammar might be embellished with the following rules:

denoting that the ‘*’ and ‘/’ operators have higher precedence than the ‘+’ and ‘–’ operators, and that

they are all left associative. These rules are then used to disambiguate such sentences as the one above,

‘i+i+i’, in that reductions take priority over shifts for rules defining use of the ‘+’ operator. Thus

‘i+i+i’ is parsed into the single syntax tree representing the association, ‘(i+i)+i’. By the use of

precedence, the parser could also disambiguate sentences such as ‘i+i*i’ under a grammar that defined

Grammar 1.5:
Simple ambiguous grammar

Table 1.6: LR parse table for Grammar 1.5

E � E + E | i

E

E E+

E E
+

i

i

i

i+(i+i) and (i+i)+i

Action Goto
i + $ E

0 sh3 4
1 sh3 2
2 sh5
3 re2 re2
4 sh5 acc
5 sh3 6
6 sh5/re1 re1

precedence left *#/
precedence left +#-

E

E E+

E E+

i

i

i

CHAPTER 1. INTRODUCTION 8

both ‘+’ and ‘*’ ambiguously. ‘*’ has higher precedence than ‘+’, so the sentence is parsed into the

syntax tree representing ‘i+(i*i)’.

Precedence and associativity rules can be used on simple expression grammars, but are inadequate when

dealing with more complex ambiguous grammars.

0�0�6 �	
	����
	�����9���:����
�
�

Standard LR parsing techniques cannot handle ambiguous grammars; however, an extension to the basic

LR technique can be used to deal with ambiguity. This technique is known as Generalised LR (GLR)

parsing. A GLR parser handles a conflict in the parse table by performing both actions, conceptually in

parallel. The parse stack is replaced with a data structure that can handle these multiple actions. When a

parse is completed successfully, rather than returning a single syntax tree as in the case of a standard LR

parser, a GLR parser will return a forest of valid syntax trees. GLR parsing is a major topic covered in

the remainder of the report, so further details are left until then.

0�0�3 ��'����
���������'

Tomita’s algorithm is a GLR parsing technique developed in the 1980’s by Masaru Tomita [Tom 85]. He

replaces the parse stack found in standard LR parsing with a Graph Structured Stack (GSS). As its name

suggests, the GSS is a graph structure, capable of representing multiple parses of the input. Shift and

reduce operations are performed on the GSS in a similar way to standard LR parsing. The result of a

successful parse is a packed forest representing all valid parses of the input. Tomita’s algorithm is

discussed in detail in 3.1, so further explanation is left until then.

0�$ 4
���� ����
������
�	��

We now introduce Haskell, a pure functional programming language. It is the implementation language

used in the project. This section introduces some of its basic features.

0�$�0 8
����
���������''�
�

The online encyclopaedia Wikipedia defines functional programming as:

A style of programming that emphasises the evaluation of functional expressions, rather
than execution of commands. The expressions in these languages are formed by using
functions to combine basic values. [Wik 01]

CHAPTER 1. INTRODUCTION 9

A functional program is made up of functional expressions. As such, it contains no variables, no

assignments and no iterative constructs. The program is executed by evaluating these expressions. The

lambda calculus1 provides a sound mathematical basis for functional programming theory. In a pure

functional programming language, all computations are performed via function application.

0�$�$ 8
����

A function in Haskell takes a number of arguments and returns a result:

Both of the above represent the same function. Some other simple examples are:

0�$�5 �-"	

Haskell is strongly typed, meaning an expression and its evaluation is a member of a determinable type.

The ‘::’ symbol in Haskell means ‘of type’. For example:

Note that (String,Int) denotes a pair of values, where the first is of type String and the second is

of type Int. Also note that [Int] represents a list of values of type Int.

Functions also have types. The symbol ‘–>’ denotes a function type:

plus takes two arguments of type Int and returns an Int. New types can be introduced by the use of

type constructors. See [Tho 99] for more information.

�����������������������������������
1 see http://www.mactech.com/articles/mactech/Vol.07/07.05/LambdaCalculus/ for Lambda Calculus introduction

plus x y = x + y (Addition of two numbers)
\x y -> x == y (Equality comparison)
swap (x,y) = (y,x) (Pair swapping)

fac 0 = 1
fac x = x * fac (x - 1) (Recursive calculation of factorial value)

fn x y = x * y
\ x y -> x * y

42 :: Int
“hello” :: String
True :: Bool
(“A”,1) :: (String,Int)
[1,2,3] :: [Int]

plus :: Int -> Int -> Int

Arguments

Body

CHAPTER 1. INTRODUCTION 10

An important feature of Haskell is polymorphic typing. This makes it possible to define operations that

can be carried out on arbitrarily-typed objects. Consider the following function:

It takes a pair of objects and swaps them. It is unimportant what the types of the two objects are – the

operation should work on objects of any type. Thus we declare the function type as:

This states that swap takes a pair of values of arbitrary type, and returns a pair of values where the type

of the first element in the new pair is the type of the second element in the original pair, and vice-versa.

Polymorphism is a useful programming tool, and can be used to greatly enhance code reusability.

Strong typing creates a safer programming environment, where many of the errors common in other

languages (such as core dumps or cast exceptions) are necessarily eliminated.

0�$�6 ����	��;��	��8
����

In Haskell, functions are first-class citizens of the language. Among other things, this means we can pass

functions as arguments to other functions. A function that takes a function as an argument or returns a

function is known as a higher order function (HOF). Consider the following function:

The use of brackets in the function type denotes that a function is expected as the first argument. The

function passed in will be of type ‘a -> a’ (it will take a value of type ‘a’, and return a value of type

‘a’). twice applies the given function to its second argument to return a value of type ‘a’ upon which it

applies the given function again to yield the result.

Higher order functions are a powerful programming abstraction, allowing significant improvements to the

structure and clarity of programs.

0�$�3 ��''	
�

Many features of Haskell have been omitted from this introduction. The inquisitive reader should note

that the Haskell Report [Pey 99] provides a complete coverage of the language, while [Tho 99] gives a

more practical guide to Haskell programming. In Chapter 2 we will consider some more advanced

Haskell-related topics relevant to the project.

swap (x,y) = (y,x)

swap :: (a,b) -> (b,a)

twice :: (a -> a) -> a -> a
twice fn x = fn (fn x)

CHAPTER 1. INTRODUCTION 11

0�5 ���!	����&!	���,	

0�5�0 4'"�	'	
�����
������'����
���������'

The first major objective of the project is to implement Tomita’s algorithm in Haskell. This requires a

thorough understanding of the algorithm itself, as well as the various related issues, such as standard LR

parsing and the use of Haskell.

0�5�$ 4
�	������
�<���������

A further development of the project is the integration of the implementation of Tomita’s algorithm with

the Haskell parser-generator tool Happy (see [Mar 00]). Happy currently provides facility for the

generation of LR parsers from unambiguous CF grammars. The project will extend it to allow handling

of ambiguous CF grammars using the implementation of Tomita’s algorithm.

0�5�5 �
��-
�
��
��(,�� ����

Analysis will be carried out on both theoretical and practical levels, aided by the use of Haskell profiling

tools. The implementation will be evaluated for correctness and efficiency.

0�5�6 ;��	����

�&�����	

Possibilities include consideration of how one might efficiently process parse forests. This may include a

brief look at some of the issues related to semantics arising from the processing of natural language

grammars. Another possibility is to consider how to identify and deal with erroneous ambiguities arising

from malformed input, such as that often found in web-pages based on HTML.

0�5�3 ;,	�����;&!	���,	

The overall success of the project relies on achievement in the following areas:

• A concise and maintainable implementation of Tomita’s algorithm in Haskell that is both correct and

efficient.

• Proof by analysis that these properties are indeed true of the implementation.

• A transparent integration of the implementation with the tool Happy, extending its capabilities to

include reliable GLR parsing.

CHAPTER 1. INTRODUCTION 12

0�6 ���!	����	��,	��&�	

The project objectives are officially met in the form of deliverables, broken up into three progressive

stages:

0�6�0 ��
��

• Study Tomita’s algorithm and become familiar with its use.

• Design and implement a prototype of Tomita’s algorithm and associated data structures in Haskell.

0�6�$ 4
�	�'	����	

• Implement a technique for decoding a parse forest into a list of individual trees.

• Study the implementation of Happy and provide a summary of the results.

• Design and implement the changes to Happy.

• Develop a small but accurate natural language grammar for testing.

0�6�5 ��,�
�	�

Possibilities include:

• Investigate the efficiency of the implementation, using theoretical methods (time and space orders)

and Haskell profiling tools to eliminate bottlenecks.

• Study and implement techniques for processing GLR parse results.

0�3 ���!	���"��

0�3�0 ����,��-����"�

The following activity graph indicates dependencies between tasks in the project:

CHAPTER 1. INTRODUCTION 13

0�3�$ ��'	���
��	'	
�����

The following table gives an outline of the projected time schedule for achievement of project tasks.

Figure 1.7: Project activity graph

Table 1.8: Time management plan

���� �����	
�������

�������
��
� �- � ''	��,������

�� �-���'��� � ''	��,������

4'"�	'	
����'����"�����-"	 0=5

4'"�	'	
���	����
���	��
�> 	 5

�� �-�������?�<���	��,	�,�	< 6=3

4
�	����	�"�����-"	��
�������� 7=1

*	,	��"�@�����''�� 2

�	
���
���	& � A=0%

�
��-
�
 00=06.
��
�	
��
	
"
�
��

��,�
�	��"�

�&�����	
 03=$$

Study
Tomita

Background
study

Design
Tomita

prototype

Implement
Tomita

prototype

Implement
decoding
technique

Completion of
Basic Deliverable

Study
Happy

Write
overview

Integrate
Tomita

prototype
into Happy

Completion of
Intermediate Deliverable

Advanced
analysis

Forest
processing

Semantic
processing

Malformation
handling

Completion of
Advanced Deliverable

Profiling &
optimisation

Test &
debug

Further
possibilities

Develop NL
grammar

CHAPTER 1. INTRODUCTION 14

0�7 �	"���

The remainder of the report is arranged in the following manner:

• Chapter 2. Background and Literature Survey: a guide to existing work in the subject area and related

issues.

• Chapter 3. Design: initial design choices and issues raised.

• Chapter 4. Implementation: details of delivered material and related issues.

• Chapter 5. Results and Evaluation: analysis results and reflection on achievements vs objectives.

• Chapter 6. Conclusion: consideration of the positive and negative aspects of the project.

CHAPTER 2. BACKGROUND AND LITERATURE SURVEY 15

���$� �������
���
�����	��� �	�� �,	-

This chapter offers background information and a brief survey of existing material related to the areas of

study associated with the project. The following topics are covered:

• LR Parsing

• Ambiguous Grammars, GLR Parsing and Tomita’s algorithm

• NL Parsing

• Forest Processing

• Haskell

$�0 ������
�
�

Although the project relates specifically to the parsing of languages defined by ambiguous grammars, a

number of the basic techniques employed are similar to those used in standard LR parsing. Thus we

begin by looking at material relating to these techniques.

LR parsing of CF grammars is well understood and documented. Most sources approach the topic from

either a mathematician’s or programmer’s point-of-view.

[Aho 86] provides thorough mathematical coverage of the LR parsing process. It looks at such key issues

as handles, lookahead symbols, stack-based shift-reduce parsing, and dealing with conflicts. All terms

and processes are formally defined without appeal to any particular implementation method.

The process of LR parsing is described less formally in [Hun 81]. Good use is made of diagrams to

illustrate the concepts being discussed. The book provides step-by-step examples to illustrate the process

of shift-reduce parsing, demonstrating how lookahead symbols are used to determine when a handle has

been identified and reduction can take place. This source is based on work carried out at the University of

Strathclyde on compiler design and implementation.

On the implementation side, [Hol 90] is a guide to writing compiler code in C. It covers all of the issues

relating to LR parsing from a programmer’s point-of-view.

LR parsing techniques have improved over the years and [Gru 00] provides up-to-date coverage of

modern techniques, as well as an excellent section on error recovery.

CHAPTER 2. BACKGROUND AND LITERATURE SURVEY 16

$�$ �'&�� �
����''��
#��������
�
���
����'���

$�$�0 �'&�� �
����''������
�
�

A significant amount of work has been carried out in the field of ambiguous grammar parsing, and a

number of techniques have been proposed. One of the earliest is the chart parsing algorithm proposed by

Martin Kay (1980) and based on Earley’s Algorithm, a top-down predictive parser presented by J. Earley

[Ear 70]. Initial chart parsing algorithms have been improved upon and variations have been introduced,

such as left-corner (LC) and head-corner (HC) variants [Sik 93], many of which make use of CF

grammars modified with additional components. Similar techniques have also been proposed, such as

Lang’s algorithm (1974) a technique for pseudo-parallel processing of non-deterministic push-down

automata (NPDA, see [Aho 86]).

$�$�$ �������
�
���
����'����
���������'

Introduced in section 1.1.3, generalised LR (GLR) parsing is an approach to ambiguous grammar parsing

proposed in the 1980’s. It makes use of certain techniques associated with traditional shift-reduce LR

parsing. A number of texts contain sections that introduce the concepts behind GLR parsing. For

example, the following is taken from Compilers – Principles, Techniques and Tools:

If we consider LR parsing tables in which each entry can contain several actions, we
obtain non-deterministic LR parsing, often known as generalised LR (GLR) parsing. A
kind of generalised LR parsing was proposed by M. Tomita in his paper Efficient
Parsing for Natural Language (1986). He uses a graph-structured stack instead of a
single stack in order to deal with multiple parses of a single sentence. [Alo 97]

A succinct description and analysis of Tomita’s algorithm is found in John Carroll’s thesis Practical

Unification-Based Parsing of Natural Language:

With this (Tomita’s) algorithm, the LR table is allowed to contain multiple entries (i.e. action
conflicts), perhaps caused by ambiguities in the grammar. Whenever the parser reaches a
state in which there is an action conflict, the stack divides, and branches corresponding to
the analyses for each of the actions are pursued, conceptually in parallel. Conversely, if
separate analyses end up in the same state at the same point in the input string, the
branches of the stack corresponding to the analyses are joined together at that state, and
subsequent actions are applied to the single merged analysis, rather than to each branch
separately….
.…If parsing halts successfully, the analysis on the single arc in the graph-structured stack
will be a packed parse forest, encoding all possible analyses of the input string. [Car 93]

Tomita’s algorithm, produces a packed forest of trees, each representing a valid syntactic structuring of

the input sentence under the specified grammar.

CHAPTER 2. BACKGROUND AND LITERATURE SURVEY 17

$�5 @�����
�
�

Natural language grammars are a subset of the ambiguous grammars. NL parsing is a good test for any

serious ambiguous grammar parser because of the immense complexity inherent within natural language.

The study of NL processing is a crossover between the fields of computer science and linguistics. Both

are extremely interested in the possibilities presented by computational NL parsing. Christopher Butler

gives a brief historical perspective:

Almost as soon as it was understood that computers could manipulate symbols as well
as numbers, a rush was on to translate texts automatically from one language to
another. This enterprise led to some of the first parsers. Although the enthusiasm of
the 1950s and 1960s was later dampened by the realisation that sophisticated analysis
of meaning was also required, practical systems were produced which helped human
translators perform the task more quickly. [But 92]

Many sources describe NL processing techniques. [Dow 85] looks at the major theories and approaches

developed from the 1950s up until about 1985. Such techniques as transformational parsers, Augmented

Transition Networks (ATN’s), Logic grammars, Unification and Semantic guidance are discussed in [But

92], [Gri 86] and [Dow 85].

NL parsing and processing are active research areas, and a number of research groups around the UK

have been involved with various related projects. One such project, called LOLITA, was carried out at

the University of Durham. LOLITA stands for Large-scale, Object-based, Linguistic Interactor,

Translator and Analyser. Further information can be found in Callaghan’s PhD thesis [Cal 97]. Another

group researching the field of NL processing operates from the University of Sheffield. They have been

involved with a number of projects, including the development of an architecture known as GATE

(General Architecture for Text Engineering) which they hope will be used as infrastructure for

computational linguistics and language engineering. GATE is described in detail in [Gai 95].

$�6 8��	
������	

�
�

A possible direction for the advanced stage of the project is to consider how to efficiently process the

forest that is the result of a successful parse. [Bil 89] looks at the structure of parse forests and how we

might take advantage of them. The application of forest processing techniques varies depending on the

type of data being represented.

CHAPTER 2. BACKGROUND AND LITERATURE SURVEY 18

$�6�0 �	'�
��������	

�
�

Semantic processing is concerned with deriving meaning from syntactic structures such as parse forests

representing NL sentences. This demands a large searchable knowledge base against which facts can be

understood in context and inferences can be drawn. It presents an enormous challenge, to which no

entirely satisfactory solutions have yet been proposed. Several prototypical approaches have been

suggested for performing such tasks. For example, M. Schiehlen discusses a system for building

semantic representations directly from shared parse forests such as those produced by Tomita’s algorithm

[Sch 96], and a number of projects have attempted to produce real-world systems that tackle the problem.

A certain amount of success has been achieved in this area, although the level of syntactic and semantic

complexity inherent in natural language makes it extremely difficult.

$�6�$ ������'����
���
���
�

Another possible application of forest processing is in the area of handling malformed input from sources

such as world-wide-web pages. No material was found that discussed this problem directly, but dealing

with malformed HTML is a well-documented concern in web-browser design. In principle, we could

allow malformations as part of the underlying grammar and then use a GLR algorithm to parse (possibly

malformed) input into a forest. Efficient forest processing techniques and heuristic algorithms could be

used to extract the most likely interpretation from the forest of possibilities. This may provide a more

robust and efficient method of dealing with malformed HTML than is current employed in web-browsers.

$�3 ��
�	��

In this section we discuss some of the more advanced Haskell topics relevant to the project, pointing to

resources containing further information.

$�3�0 (,�� ����
#�4
�	�"�	�����
��
����'"������

In an imperative programming language commands must be executed in sequence, because the use of

variables and assignment induces the notion of state. As the program progresses, the state of the system

may be modified, therefore sequence must be preserved for the result of the program to be consistent.

Consider the following Java fragment:

If the compiler did not uphold the sequence of these commands, the value of x might end up as either 1, 2

or 3.

int x = 1;
x = 2;
x = x + 1;

CHAPTER 2. BACKGROUND AND LITERATURE SURVEY 19

In a pure functional language such as Haskell there is no inherent concept of state. A program is simply a

functional expression, the result of which will necessarily be well-defined if the function itself is well-

defined. An expression is evaluated by reducing it to its simplest, or canonical form. Evaluation in

Haskell is non-strict. This is a form of call-by-name evaluation in which arguments to functions are only

evaluated if they are required to get a result. For more information see section on compilation of

functional languages in [Gru 00]. Non-strict evaluation gives rise to a novel style of programming. For

example consider the following expression:

The function take returns the first n elements of a list L where n is the first argument and L is the

second. The construct [0..] generates an infinite list of integers, beginning at 0. In a strict

environment, both arguments to take need to be evaluated, and the program would crash as it tried to

generate the infinite list of integers. However, in Haskell only the first two elements of the list are

generated, because the compiler/interpreter recognises that to evaluate take in this case requires only the

first two elements of the list. Non-strict evaluation can be exploited in powerful ways to give elegant,

modular implementations of algorithms and other programming paradigms.

$�3�$ ��
��

Often when designing a solution to a problem it is necessary to maintain some data structure throughout

all or part of a computation (state). Haskell does not have explicit state, and passing such structures

through a series of functions can become somewhat complicated and messy. One solution is provided by

monads. The concept of a monad is drawn from category theory, and they can be used in a functional

language such as Haskell to hide the complexity of explicitly passing state values through the stages of a

computation. Monads are a class of types providing methods by which we can string a number of actions

together in sequence, passing values through the computation. A Monad must provide bind and return

operations. Bind allows monads to be chained together to form a sequence of actions and return allows a

value to be wrapped in a monadic type constructor. The following is a simple model of a chain of

monadic actions with state:

Figure 2.1: Chain of monadic actions

take 2 [0..]

Monad
State
s

Value a

s
Monad

alter
a

s
Monad aa

alter
a

a

CHAPTER 2. BACKGROUND AND LITERATURE SURVEY 20

In this example the dotted line denotes an implicit passing of a state variable. We create the chain of

monadic actions and pass in an initial state value along with an initial value for the result. Finally, the

result of the entire computation is returned.

In fact, monads can be used to model a number of imperative programming paradigms, such as IO. Note

that if we were to remove the state value from Figure 2.1, then we would simply have a sequenced chain

of actions. This is how IO is handled within Haskell. See [Pey 00] for more information on the use of

monads in Haskell.

$�3�5 �������
�

Analysis and evaluation of the implementation are important aspects of the project. Profiling tools

provide effective methods of analysing Haskell code for time and space efficiency. The Glasgow Haskell

Compiler2 (GHC) provides two main profiling tools:

� Cost-centre profiling

� Heap profiling

Cost-centre profiling generates information about the sections of code responsible for the cost of

evaluation in terms of time and memory allocation. It also shows a breakdown of the call hierarchy,

listing the number of times a specified function was called and where it was called from. This is useful

for isolating particularly expensive functions so that they can be optimised.

Heap profiling generates a graphical representation of the heap usage throughout execution of a program,

stratified by individual functions. This is useful for identifying the memory behaviour of a program and

eliminating space leaks. It should be noted that when dealing with non-strict evaluation it is difficult to

predict how different parts of the code will behave. Optimisation is made much easier through the

guidance of profiling tools.

�����������������������������������
2See http://www.haskell.org/ghc/

CHAPTER 3. DESIGN 21

���5� *	
��

This chapter looks at design issues associated with the project. We focus on the structure and operation

of Tomita’s algorithm. Initially, the traditional design of the algorithm as proposed by Tomita will be

considered, followed by a discussion of the choices made in the design of the Haskell version of the

algorithm for the project. A final section will be given to the extension of Happy.

5�0 ��'����
���������'�����������
����""�����

The traditional design model of Tomita’s algorithm is based on imperative programming techniques,

although the principles discussed are also relevant to a functional design model.

5�0�0 ���
	�8��	
����� �� �	

The output from a GLR parsing algorithm such as Tomita’s is a collection of all valid syntax trees

derivable from the input sentence under a given grammar. Thus, in terms of accuracy, it would suffice

simply to return a list of these trees. However, the level of ambiguity present in many grammars,

especially in the area of NL, renders this technique impractical due to the amount of memory and high

cost of computation required to store and manipulate such large collections of trees. An example is given

in Callaghan’s thesis [Cal 97], in which an analysis of the sentence “I own a car” under LOLITA’s wide-

coverage English grammar produced over 13,000 possible syntactic interpretations.

Tomita proposed an efficient method of representing a collection of trees using a structure known as a

parse forest. Two techniques are used to achieve this efficiency:

• Subtree sharing

• Local ambiguity packing

It is often the case in ambiguous grammar parsing that much of the substructure contained in distinct

syntax trees is actually identical. Consider the sentence “I saw Fred in the car”. Two possible syntactic

interpretations are as follows:

CHAPTER 3. DESIGN 22

The first interpretation associates the prepositional phrase (highlighted) with the noun ‘Fred’, the second

with the verb ‘saw’. Note, however, that the structure of the prepositional phrase is identical in both

interpretations. This can be exploited by a method known as subtree sharing, where identical constituents

are represented by a single object.

Also note in Figure 3.1 that the top-level structure is identical in both trees:

This symmetry can be exploited by a technique known as local ambiguity packing, where distinct sub-

nodes having the same category (VP in the case above) are ‘packed’ into a single node. This packed node

can then be incorporated into the forest in exactly the same way as a standard node. Thus, the forest

representing the sentence “I saw Fred in the car” incorporating subtree sharing and local ambiguity

packing might be represented as follows:

Figure 3.1: Identical structure in syntax trees

VP

S

NP

N

I

...

V = Verb
PP = Prep. Phrase
P = Preposition
Det = Determiner

VP

S

NP

N

I

V

saw

OB

NP

N

Fred

PP

P NP

in Det

the

N

car

VP

S

NP

N

I

V

saw

OB

N

Fred

PP

P NP

in Det

the

N

car

S = Sentence
NP = Noun Phrase
VP = Verb Phrase
OB = Object
N = Noun

CHAPTER 3. DESIGN 23

The double lined arrows denote that the node labelled VP is a packed node representing two analyses.

Shared subtrees are those with more than one arrow pointing to them. Note that technically, a forest is a

directed, acyclic graph (DAG).

5�0�$ ������� �� �	�9��������
��:

The GSS (Graph Structured Stack) is a data structure fundamental to the design of Tomita’s algorithm. It

can be conceptualised as a parse stack, offering the common shift and reduce operations. However, it is

based on a graph rather than a list. The graph is a DAG, with vertices representing stages in the parse,

connected by arcs. Each vertex contains a state number and each arc contains a forest structure

representing an analysis of the input consumed thus far.

5�0�5 ����;"	�����

�9��������
��:

As stated earlier, the GSS provides the shift and reduce operations associated with a traditional parse

stack. In standard shift/reduce parsing, the operation is always applied to the element on top of the stack;

in a GSS, the operation is applied to a particular vertex v, representing an element on top of the stack.

There may be multiple elements on top of the stack at any one time. The semantics of the operations are

as follows:

Figure 3.2: Parse forest structure

VP

S

NP

N

I

PP

P NP

in Det

the

N

car

saw

OB

NP

OB

N

Fred

V

CHAPTER 3. DESIGN 24

• shift(v): a new arc is created, extending from v, containing a forest representing an analysis of the

token of input being shifted (a single forest leaf), linked to a new vertex labelled with the new state,

as specified by the action table.

• reduce(v): arcs extending from ancestor vertices at a distance of n arcs from v, where n is the

number of symbols in the right-hand side of the nominated reduction rule, are removed from the

graph, along with the redundant vertices. A new arc is created from each of these ancestor vertices,

containing a new analysis consisting of a forest node labelled with the left-hand side of the

production rule, whose children are the forests contained on the arcs leading up to v. Each of these

new arcs is then linked to a new vertex, labelled with the state specified in the goto table.

Subtree sharing is incorporated into the GSS in the abstract sense that if two arcs contain identical

analyses of part of the input, then a single forest representing the analyses is shared between the arcs.

This sharing is then propagated into the resulting parse forest as the analyses are assembled through

reductions.

Local ambiguity packing occurs when more than one arc exists between two vertices. This represents a

state in which the parser has branched (due to a conflict) and subsequently reduced the branching analyses

into the same top-level node. If this is the case, then the analyses can be packed into a single node, and

the multiple arcs replaced with a single arc containing the packed forest node.

The parser is initialised with a single vertex representing the initial state (usually 0). The parse then

proceeds in accordance with the actions specified in the parse table. When a conflict is identified, all

conflicting actions are performed on the vertex in question, conceptually in parallel. If the branching

analyses arrive concurrently at the same state, they are joined into a single vertex.

5�0�6 ����()�'"�	�9��������
��:

An example will help to clarify these concepts. Consider the following parse of the sentence “i + i +

i $” under Grammar 1.5 (section 1.1.3), with its associated parse table (Table 1.6), using a traditional

Tomita parsing algorithm ($ is the EOF symbol):

First the GSS is initialised in state 0 (vertices on ‘top’ of the stack are shaded):

The first token in the input is ‘i’ and the corresponding action in state 0 is ‘sh3’. An arc is created from

the original vertex to a new vertex representing state 3, containing a forest leaf labelled with the shifted

token of input.

0

CHAPTER 3. DESIGN 25

The next token of input is ‘+’ and the corresponding action ‘re2’. The reduction is carried out, and the

GSS develops as follows:

The parse continues deterministically until the fourth token of input is encountered. The GSS at that stage

is as follows:

Note that we don’t distinguish the first ‘i’ from the second - it is only stored once as a shared subtree

between the two arcs (0,4) and (5,6). Information about the position of a lexeme in the input sentence is

not stored explicitly, although it can be retrieved from higher-level forest structure if required.

The action for a ‘+’ token in state 6 is ‘sh5/re1’. All reductions are performed before any shifts,

leaving the GSS in the following state before the shifts:

Note that there are now two nodes on ‘top’ of the stack, and also that the forest being built up along the

lower arc incorporates subtree sharing. The shift action to be performed on both top nodes is ‘sh5’

allowing the two analyses to be united into a single vertex. The final ‘i’ is then shifted and reduced to an

‘E’, leaving the GSS as follows:

0 3

Lf(‘i’)

0 4

Nd(E [Lf(‘i’)])

0 4

Nd(E [Lf(‘i’)])

5 6

Lf(‘+’)

0 4

Nd(E [Lf(‘i’)])

5 6

Lf(‘+’)

4

Nd(E [])

CHAPTER 3. DESIGN 26

A reduction on the top vertex (state 6) and subsequent reduction on the newly created vertex (also state 6)

leaves the GSS in the following state:

Note that there are now two arcs, both extending from the same vertex and conjoining in the same state,

containing separate analyses of the input parsed thus far. These analyses can therefore be packed into a

single analysis with the category ‘E’. The next action is an ‘accept’ on the top vertex (state 4), and the

parse terminates with the GSS in the following condition:

If a parse is successful, the final state of the GSS will always be a single arc extending from the initial

vertex to the final accepted vertex. The forest contained on this arc represents all valid parses of the input

(in this case the two ways of associating the + operator) and is returned as the result of the successful

parse.

Figure 3.3: Traditional GSS example

0 4

Nd(E [Lf(‘i’)])

5 6

Lf(‘+’)

4

Nd(E [])

5 6

0 4

0 4

Nd(E [Lf(‘i’)])

Lf(‘+’)

Nd(E [])Nd(E [,])

Nd(E [Lf(‘i’)])Lf(‘+’)Nd(E [])

Nd(E [])

Nd(E [])

CHAPTER 3. DESIGN 27

5�$ ��'����
���������'���8
����
����""�����

Having considered the design of Tomita’s algorithm from a traditional viewpoint, we now propose a

design model for a functional implementation.

5�$�0 8��	
����� �� �	�98
����
������	�:

As previously discussed, a forest is technically a DAG. We can represent such a graph structure by a list

of nodes, each mapped to by a unique key value. Within each node is stored a list of the key values of

that node’s children.

In a parse forest, each node is labelled with a grammar symbol. Nodes with one or more children are

labelled with non-terminals; Nodes with no children (leaves) are labelled with terminals. A packed node

contains a list of two or more alternative analyses, each one with its own list of children. The top node in

the forest must be specified so that it can be identified among the other nodes in the mapping. The

representation can be stated more formally as follows:

A parse forest (under grammar G) is:

where

and ndi is a forest node such that:

where

and ai is an analysis such that:

where ci is a child node key value such that:

We should further stipulate that the forest contain no duplicate nodes:

Note that the properties of the relation are those of an injective function.

a binary relation PF = {(k1,nd1),...,(kn,ndn)}

ki (1 ≤ i ≤ n) is a value of arbitrary type such that
∀ k,nd,nd’ . (k,nd)∈PF ∧ (k,nd’)∈PF � nd=nd’ (uniqueness of domain values)

ndi (1 ≤ i ≤ n) = (gs,[a1,...,am]) (gs – grammar symbol)

gs ∈ (terminals(G) ∪ non-terminals(G))

ai (1 ≤ i ≤ m) = [c1,...,cj]

ci (1 ≤ i ≤ j) ∈ domain(PF)

∀ k,k’,nd . (k,nd)∈PF ∧ (k’,nd)∈PF � k=k’ (uniqueness of range values)

CHAPTER 3. DESIGN 28

5�$�$ ������� �� �	�98
����
������	�:

In Tomita’s original specification, the GSS is designed and implemented as a DAG. We could represent

the GSS, then, in the same way as the forest discussed in the previous section, using an injective

functional mapping of key values to vertices. However, we should consider that once constructed, a

forest node need not be revisited (except for equality testing & packing), whereas vertices in the GSS

require extensive updating as the parse progresses. If a mapping such as the one suggested above were

used to represent the GSS, a vertex that required updating would have to be located, removed, broken

down, rebuilt and reinserted into the map – a complicated and computationally inefficient procedure.

Moreover, as reduce actions are performed on the GSS, certain sections become redundant. If the graph

is represented as a map, redundant arcs and vertices must be explicitly removed to maintain storage

efficiency. This requires extra computation that we wish to avoid in a language such as Haskell which

has its own garbage collection process.

Peter Ljunglöf has carried out some work on designing a functional version of Tomita’s algorithm. In

chapter 6 of his licentiate thesis [Lju 02] he proposes a data structure for the GSS which is suited to a

functional programming environment.

Rather than an explicit DAG, Ljunglöf suggests representing the GSS as a collection of trees, where each

tree represents a parse stack with a distinct top-level state. When a conflict occurs, the stack is split into

two identical stacks and both operations are performed, conceptually in parallel. Although it appears that

two stacks have been created in the place of one, the identical lower sections of each stack are stored

internally as single objects. This means that the data structure exists in memory as a DAG, even though it

appears as a collection of trees to the programmer. This concept is illustrated by the following diagram:

Figure 3.4: Collection of trees stored internally as a DAG

stored as

Programmer’s view State of memory

, ,

CHAPTER 3. DESIGN 29

All objects in Haskell are stored internally by reference, thus when a stack is duplicated, its pointer is

copied and the stack itself remains as a single object.

By representing the GSS in this form, we no longer have to worry about working with an explicit graph

structure. Much of the computation can be performed on trees, a data structure well-suited to the

functional environment. Furthermore, the collection of trees can be represented as a list, allowing the use

of well-established functional techniques for working with lists of objects.

It should be noted that although we borrow the basic idea for the GSS representation from Ljunglöf, other

aspects of the design model, such as the parse forest structure and main driver are entirely different.

5�$�5 ����;"	�����

�98
����
������	�:

We now consider the design model for GSS operations, in light of the new representation.

The top-level node of each tree in the collection corresponds to one of the vertices on top of the stack in

the tradition GSS model. Thus, we apply shift and reduce operations to top-level nodes as we would

apply them to top vertices in the traditional GSS. If the same state is reached concurrently by two

separate trees, their top-level nodes are merged to form a single tree.

Subtree sharing is incorporated into the new GSS model by use of parse forest node indices. Because the

parse forest is represented as an injective functional mapping of key values to forest nodes, the index

values act as pointers to each distinct sub-analysis and are used to represent sharing between different

sections of the GSS.

Local ambiguity packing occurs when the parser reaches a state in which two trees are identical except for

their top-level analyses, in which case their top-level analyses can be packed and the trees combined:

Figure 3.5: Local ambiguity packing in functional GSS model

α α

β β

χ δ

0 0

1 1

22

3 3

α

β

0

1

2

3

φ where φ = pack([χ,δ])

packed into

CHAPTER 3. DESIGN 30

5�$�6 ����()�'"�	�98
����
������	�:

As an example, let us take the same grammar, sentence and parse table used in Figure 3.3, and

demonstrate the parsing process under the new GSS model (nodes shared at memory level are shaded):

Firstly the parser is initialised with the collection containing a single tree with a single node in state 0 (the

initial state):

The parse then continues deterministically until the conflict on the fourth token of input:

At this point, the conflict is dealt with by duplicating the tree and performing both shift and reduce

actions. The result is as follows:

Note that the top nodes now both have the same state, and can therefore be merged, combining the two

trees. The final ‘i’ is then shifted and reduced to an ‘E’ to leave the GSS in the following state before

the EOF symbol:

Nd(E [])

0

Nd(E [Lf(‘i’)])

Lf(‘+’)

0

5

4

0

4

5

6

Nd(E [Lf(‘i’)])

Lf(‘+’)

,
4

5

6

5

0

CHAPTER 3. DESIGN 31

Performing the next two reductions leaves the GSS as follows:

Note that the collection now contains two identical trees, bar their top-level analyses. The means that

packing can occur, before the final action is an accept on the top node (state 4) of the remaining tree:

Importantly, the resulting forest is identical to that produced by the traditional GSS model (Fig 3.3).

Figure 3.6: Example of tree-collection GSS parse

0

4 Nd(E [Lf(‘i’)])

Lf(‘+’)

Nd(E [])Nd(E [,])

Nd(E [])

Nd(E [])

Nd(E [])

Nd(E [Lf(‘i’)])Lf(‘+’)

0

4

0

4

,

4

5

6

Nd(E [Lf(‘i’)])

Lf(‘+’)
Nd(E [])

0

6

5

0

4

CHAPTER 3. DESIGN 32

5�5 ����=�	,	����� �� �	

In this subsection, we consider the design of the high-level structure in the functional model of Tomita’s

algorithm.

5�5�0 ����	���
���
�

The high-level structure of the algorithm suggests some use of state. For instance, the forest must be

grown as the parse progresses, requiring regular equality testing on its nodes, as well as various structural

updates. The monadic framework within Haskell is a good mechanism for handling such issues. This is

discussed in detail in Chapter 4, but for now it will suffice to note that the parse forest can be thought of

as a state value, available throughout the computation.

5�5�$ *��,�
����	����
	�

We now consider the design of the parser driver, or the method by which a string of input tokens is

converted into a parse forest.

As each token of input is encountered, the contents of the top of the GSS are examined and the relevant

actions performed, as directed by the parse table. If there are no more tokens, there should be a single

element on top of the stack in the accept state, and the parse terminates. Note that the last input token is

always the EOF symbol, as in standard LR parsing (see 1.1.2). In pseudo-functional code, this might look

as follows:

The most complex aspect of the GLR parsing process is represented by the doActions function in the

illustration above. Essentially, every top-level node in the GSS must be examined and the relevant action

performed as directed by the parse table. For shift actions a single shift operation is performed on the

relevant node. Reduce actions are more complicated though, as performing a reduce operation may leave

the GSS with new top-level nodes which must also be examined. This requires a closure operation that

iteratively reduces top-level nodes.

Figure 3.7: Top-level GLR parsing process

doParse [] gss = returnForest
doParse (tok:toks) gss = doParse toks (doActions tok gss)

(doActions is a function that performs the relevant actions
 on the top elements of the GSS and returns a new GSS)

CHAPTER 3. DESIGN 33

Performing reductions is complicated further by the fact that every time a reduction is performed, we

must check to see if local ambiguity packing can occur. Allowing packing to occur at the earliest possible

stage requires us to reduce trees in reverse height order. Consider the following example:

Reducing the first tree by the production rule ‘φ → δ χ’ with goto state 7 will lead us to a position where

packing can occur:

However, if the second tree were reduced before the first (say by the rule ‘S → α β’ with goto state 2) this

opportunity to pack would be missed, leaving us in the following position:

Similarly, if we applied reductions across the whole collection without packing between each one we

would end up in the same state.

Thus, the tallest tree must always be reduced first, and the new trees created by the reduce operation must

be introduced into the collection before the next reduction is considered.

Figure 3.8: Necessity for reverse height-ordered reducing and packing

α

χ

δ β

α
4

5

6

0

4

7

0

4

7

0

α

φ

4

7

0

α

β

4

7

0

α

pack([β,φB:packs into

2

0

S

packing missed4

7

0

α

φ

,

,

,

CHAPTER 3. DESIGN 34

We now consider conflict handling. The representation chosen for the GSS makes it relatively easy to

handle conflicts when they arise. We simply duplicate the tree upon which the conflict has arisen and

ensure that both actions are performed. As discussed earlier, the underlying mechanics of Haskell handle

the sharing of the lower sections of the trees. We will define some type for actions returned by the parse

table, for example:

Note that Reduce and Shift can represent either single actions or Reduce/Reduce and Shift/Reduce

conflicts respectively.

Tying these factors together, we can now specify a structure for doActions from Figure 3.7 (assume

GSS is a list of trees reverse-ordered by height):

Figure 3.9: GLRAction data type

Figure 3.10: Structure of doActions and auxiliary functions

doActions tok = (shiftAll tok).(reduceAll tok)

reduceAll tok [] = []
reduceAll tok (tr:trs) =
 case getAction tr tok of
 Reduce rs -> reduceAll tok $ pack (reduce tr rs) trs
 Shift st rs -> (tr,st) ++ reduceAll tok $ pack (reduce tr rs) trs
 _ -> reduceAll tok trs
 where
 action tr tok = function that looks up the entry for the top state of tr and the current

token tok in the parse table

 reduce tr rs = function that performs all specified reduce operations rs on tr and
returns the resulting list of new trees

 pack ts ts’ = function that converts ts and ts’ into a single list of (reverse height
ordered) trees, performing packing where possible

shiftAll tok gss =
 [shift tr st | (tr,st) <- gss]
 where
 shift tr st = function that performs shift on tr, returning the new tree with top state st

data GLRAction
 = Reduce [Rule] -- one or more reductions
 | Shift State [Rule] -- shift & one or more reductions
 | Accept -- accept
 | Error -- blank entry

CHAPTER 3. DESIGN 35

For each tree in the GSS, reduceAll looks up the relevant action in the parse table for its top state and

the current token. If Reduce is specified then the reduction is performed, the new trees are packed into

the existing GSS and a recursive call to reduceAll is made. If Shift is specified then again all

reductions are performed, but this time the current tree is paired with its shift state and concatenated onto

the result of the recursive call. If Accept or Error is specified, then we simply let go of the current

tree and continue, as its related derivation (erroneous or complete) will already be stored in the forest (see

next section for discussion of error handling). shiftAll then maps the shift operation over all

remaining trees in the GSS, now paired with their respective shift states.

A useful addition to the parser driver is the ability to supply as input a string of sets of tokens, rather than

just individual tokens. For example, in the area of NL parsing a single lexeme is often associated with a

number of different parts of speech, i.e. the word ‘park’ can be either a noun or verb. To illustrate this

concept, input might be structured as follows:

This can easily be incorporated into our design model. When a set containing more than one token is

identified at some stage in the input, we simply duplicate the parse stack (list of trees), perform the

relevant actions on both stacks and merge the results. In the example above, the analysis of the sentence

with ‘park’ as a verb will result in an error.

5�5�5 (�������
���
�

An error occurs in the GLR parsing process when there are no entries in the parse table for a specific

token/state index. In standard LR parsing, an error occurs in exactly the same way and the required

determinism of the process signifies a parse failure. However, in GLR parsing an error only signifies a

failure to parse one of possibly many derivations. A complete parse failure occurs only if the process

fails to produce any valid derivations. Thus, we divide potential errors into two categories:

• Partial errors, signifying failure to parse a particular derivation.

• Total errors, signifying failure to parse any valid derivations.

More concretely, a partial error occurs when the parse table entry for the top state of a tree in the

collection under the current token specifies an Error. When a partial error is identified, we can either

ignore it and continue searching for a valid derivation, or store information about the tree that caused the

error, along with the current token, and return it at the end of the parsing process. A total error occurs

Figure 3.11: Input token structure

Pro “I” Verb “went” Prep “to” Det “the”
Noun “park”

Verb “park”

CHAPTER 3. DESIGN 36

when the parsing process arrives at a state in which the GSS is empty; i.e. there are no more valid sub-

derivations that can be pursued. In this case, the process should report a complete parse failure.

5�6 4
�	������
�<���������

The chapter concludes with a look at the design issues associated with the integration of the functional

version of Tomita’s algorithm with the Haskell parser-generator tool Happy.

5�6�0 �
��-
�
���������

Happy is an LALR(1) parser-generator tool, written in Haskell. It takes as input a file specifying a

context-free grammar and generates an LR parser using LALR(1) table generation technology. If

successful, a new Haskell file is created containing the parser, which can then be compiled either as a

stand-alone program or incorporated into some larger system. As well as the grammar, the input file

requires further information to be specified about the resulting parser, such as the type of tokens in the

language and the lexer function which converts strings of text into tokens. Happy is executed directly

from the command prompt, and has a number of options that can be specified by setting various flags.

The following diagram illustrates the high-level internal structure of Happy.

CHAPTER 3. DESIGN 37

Figure 3.12: High-level internal structure of Happy

Read CLI (Command
Line Interface)

Arguments

Process
CLI

C Input action

C Output action

C Internal action

C Condition

CLI Args Parse FailureCLI Args Parse OK

Print Error /
Version Info

‘Mangle’
AbsSyn into
Grammar DT

 Parse OK

Parse
Grammar File
into AbsSyn

Parse Failure

Print Error

Error in Grammar

Print Error

Die

Make LALR
Tables

Die

Die

Report Unused
Rules & Terminals

Report
Conflicts

Info File Requested
Generate
Info File

No Info File
Output
Tables

Write
Info File

Generate
Parser

Write Parser
Files

Read
Grammar File

CHAPTER 3. DESIGN 38

5�6�$ 4
�	������
����������'"�
	
�

The project integrates the functional implementation of Tomita’s algorithm with Happy, allowing it to

generate GLR parsers for languages derived from ambiguous CF grammars. This is carried out by

incorporating a section of code into Happy that produces a GLR parser based on a template containing the

functional implementation of Tomita’s algorithm. The resulting GLR parser uses the LALR parse tables

generated by Happy. A new flag is added, allowing the user to specify which type of parser to generate

(standard LR or GLR). The integration involves altering the high-level structure of Happy at the

following point:

The rest of the internal structure of Happy remains unchanged. Further details about the modifications

made are found in Chapter 4.

5�6�5 ���

"��	
�-

An important aim of the integration is transparency. That is, as far as the user is concerned the process of

creating a GLR parser should be the same as for a standard LR parser, the only difference being the

setting of the flag governing which option to take. Thus, as many as possible of the original options and

features found in the standard LR version of Happy are preserved in the extended version. This includes

such features as user-definable token types and the incorporation of additional module declaration code,

as well as the ability to output information about the parse table structure.

A feature available in the LR version of Happy that is not yet incorporated into the GLR extended version

is the embedding of production-translation code into the parser. It is possible to convert a parse tree into a

Haskell expression as the parse progresses, by providing code that is evaluated along with each reduction.

See [Mar 00].

Figure 3.13: Amendment to internal structure of Happy

GLR Parser

Output
Tables

Generate
GLR

Parser

Write Parser
Files…

Standard LR Parser Generate
LR

Parser

CHAPTER 3. DESIGN 39

This is relatively straightforward in deterministic LR parsing, but becomes much more complicated when

dealing with non-determinate GLR parsing, where lower level sub-derivations exist in possibly many

higher-level contexts (arising from ambiguities in the grammar). Thus, the translation required on part of

a sentence cannot always be carried out without knowing the context in which it exists. In fact, many

different translations may be required on a single sub-derivation. This is evident in the area of NL

parsing, for instance, where a part of a sentence is often meaningless without appealing to the context of

the whole. A possibility might be to apply context-insensitive translations to relevant sections as the parse

progresses, and postpone context-sensitive processing until higher-level sections have been parsed.

Further discussion is beyond the scope of the project, but would be an interesting area of research.

CHAPTER 4. IMPLEMENTATION 40

���6� 4'"�	'	
�����

The aim of this chapter is to provide information about the implementation of the design models

described in chapter 3. We consider the implementations of the three main components of the GLR

parser based on Tomita’s algorithm:

• The data type representing parse forests.

• The data type representing the tree structures that comprise the GSS.

• The parser driver.

We also consider some of the optimisations that were carried out on the implementation to increase its

efficiency and to outline the modifications made to Happy. The chapter concludes with a description of

the implementation of the technique used to decode parse forests into their component trees.

6�0 ���
	�8��	
��*�����-"	

In this subsection we consider the structure and operations of the data type implementing the parse forest

model described in section 3.2.1.

6�0�0 8��	
�@��	��
���	���"���� �� �	

The internal structure of a parse forest is that of a DAG. We have seen that this can be represented as an

injective functional mapping of key values (henceforth referred to as indices) to forest nodes (3.2.1). The

two main components of the model are:

• A data structure representing forest nodes, stored as elements in the map.

• A data structure representing the map itself.

We implement the forest node data structure in Haskell as an algebraic data type:

Where the arbitrary type variable ‘a’ represents the grammar category associated with the node, and the

list [[Int]] represents a (possibly empty) packed collection of analyses, each consisting of a list of

forest node indices.

data ForestNode a = FNode a [[Int]]

CHAPTER 4. IMPLEMENTATION 41

The injective functional map is implemented as a new ADT known as a SetMap. The basic type

constructor is:

Elements of the relation are pairs of indices and values, where indices are of type Int and values are of

arbitrary type. Unused indices are stored as an infinite list of fresh Int values (see 2.5.1 on non-strict

evaluation). Each element also has an Int field representing the number of times it has been used by a

client (see 4.1.2 for details). The type system in Haskell isn’t strong enough to enforce the injective

functional property of the relation, but we can handle this behind the ADT barrier.

6�0�$ �	���"�;"	�����

The SetMap data type implements a number of operations. They are described as follows:

• initSM :: SetMap a

The relation itself is initialised as an empty list, and the list of unused indices is initialised as an

infinite list of integers, beginning at zero.

• addElem :: Eq a => a -> SetMap a -> (Int,SetMap a)

The relation is searched for values matching the value to be added; if such a match is found, the

SetMap is returned unchanged, paired with the matching value’s index. If no match is found, a

fresh index is taken from the head of the unused indices and paired with the new value, then added to

the head of the relation. The amended SetMap is returned, paired with the new index.

When a new element is added, its number of uses field is initialised to 1. If an element already exists

for a given value, its number of uses is incremented.

• getElem :: Int -> SetMap a -> Maybe a

If the element corresponding to the given index is found in the relation it is returned, wrapped up in

the Maybe data type, using the Just constructor, otherwise the Maybe value Nothing is

returned.

data SetMap a = SM [Int] -- unused indices
 [Element a] -- the relation

data Element a = EL (Int,a) -- (index,value) mapping
 Int -- uses of element

CHAPTER 4. IMPLEMENTATION 42

• decElem :: Int -> SetMap a -> (Maybe a,SetMap a)

If the element corresponding to the given index is found in the relation its number of uses field is

decremented. When this reaches 0 the element is removed from the relation and the newly-freed

index is appended to the head of the unused indices list. The element’s value is then returned,

wrapped in Just, paired with the amended SetMap. If the element corresponding to the given

index does not exist in the relation, then Nothing is returned, paired with the unchanged SetMap.

A full listing of the SetMap operations is provided in Appendix A.

6�$ �������*�����-"	

In section 3.2.2 the GSS was modelled as a collection of trees. The project implements these trees as a

new ADT known as a TStack3. The following subsection looks at the structure and operations of the

TStack ADT.

6�$�0 ���������� �� �	

A TStack is an ADT with the following type constructor:

The first field in the constructor is an Int value representing the state of the top-level node in that

TStack, and in standard tree form the second field is a list of children, along with the element that resides

on the arc connecting the top-level node to each of its children. A TStack can be pictured

diagrammatically as follows:

�����������������������������������
3 The basic idea for the TStack is borrowed from [Lju 02] although the implementation is somewhat different (see 3.2.2).

Figure 4.1: TStack ADT

data TStack a = TS Int -- state
 [(a,TStack a)] -- [(element on arc , child)]

Int

TStack

1
. . . TStack

n

a1 an. . .

state

elements on arcs to children

children

CHAPTER 4. IMPLEMENTATION 43

6�$�$ �������;"	�����

• initTS :: TStack a

Initialises a new TStack node with an empty list of children in state 0.

• push :: a -> Int -> TStack a -> TStack a

Takes an element and a state along with an existing TStack, and returns a new TStack in the new

state, whose single child is the old TStack paired with the input element. Illustrated as follows:

• pop :: Int -> TStack a -> [([a],TStack a)]

Recursively pops a given number of nodes from the given TStack, returning a list of the

descendant TStacks, each one paired with a list of elements collected between it and the top node

in the input TStack.

• popF :: TStack a -> TStack a

Returns the first immediate descendant of the given TStack. Useful if we know that a TStack has

only one child.

• top :: TStack a -> Int

Returns the value in the state field of a TStack.

• vals :: TStack a -> [a]

Returns a list of the elements on the arcs from the top node of a given TStack.

• height :: TStack a -> Int

Returns an Int representing the number of arcs between the top node in a given TStack and its

furthest descendant.

Figure 4.2: Push operation on TStack

original
TStack T

push x s T
(where
 x = new element
 s = new state) original

TStack T

s

x

CHAPTER 4. IMPLEMENTATION 44

• merge :: [TStack a] -> [TStack a]

Takes a list of TStacks and joins those with the same top states. To illustrate:

A full listing of the TStack operations and their type signatures is provided in Appendix B.

Additionally, we overload the compare function for the TStack ADT, making it a member of the Ord

class. This allows us to reverse order lists of TStacks by height, a necessity if packing is to occur

whenever possible at the parser-driver level (3.3.2 – Figure 3.8).

6�5 ����=�	,	��4'"�	'	
�����

In this subsection we consider the implementation of the design model for the high-level structure of

Tomita’s algorithm proposed in section 3.3.

6�5�0 ����	���
���
������
�������� �� �	

It was noted in section 3.3.1 that some notion of state and sequence needs to be incorporated into the

design and implementation model, allowing us to grow the parse forest throughout the various stages of

the parse. In this subsection we will consider how the project implements state and sequence using the

monadic framework in Haskell (see 2.5.2).

We need to carry the growing parse forest through the computation as an updateable state value. We

therefore define a monad that allows us to accomplish this using a simple monadic type definition:

In our model, the type variable s denotes the state value, and the type variable a denotes the GSS. We

then define simple bind (>>=) and return operations from which we can construct monadic

computations.

Figure 4.3: Merge operation on list of TStacks

merge
a3

C1

3

a1

5

a2 a3 a4

3

C2 C3 C4 C1

a1
5

a2
a4

3

C2C3 C4

data ST s a = MkST (s -> (a,s))

,,,

CHAPTER 4. IMPLEMENTATION 45

We also need to define operations that allow us to access and modify the state value (the parse forest in

our case). To this end we implement two operations:

The first is used to apply a function to the state value and return the result; the second replaces the current

state value with the given one in subsequent computation.

Finally, we implement a function called runST which takes an initial state value along with a constructed

monadic computation, and returns the final state (the completed parse forest):

6�5�$ ���
	��*��,	�

We now consider the implementation of the parser driver in light of the design model specified in section

3.3.2.

The doParse function of figure 3.7 is implemented as foldM (part of the Monad library) applied to a

function f, an initialised GSS and the list of input tokens, where f is a monadic implementation of the

doActions function from figure 3.10, and the initialised GSS is simply a list containing a single

initialised TStack object (see initTS operation, 4.2.2). The implementation is as follows:

where

This has the effect of constructing a monadic computation where doActions is applied to each token in

the input list, modifying the GSS through the computation. To retrieve the completed parse forest we

simply apply runST to an initialised parse forest and the result of doParse:

fromS :: (s -> b) -> ST s b
setS :: s -> ST s ()

runST :: s -> ST s a -> s

doParse :: [Token] -> ST Forest [TStack FID]
doParse toks = foldM doActions [initTS] toks

type FID = Int -- forest node indices
type Forest = SetMap (ForestNode GSymbol) -- the parse forest

data GSymbol = symbols in the grammar: terminals (Tokens) & non-terminals

parse :: [Token] -> Forest
parse toks = runST initSM (doParse toks)

CHAPTER 4. IMPLEMENTATION 46

The implementation of doActions is as follows:

Using do notation makes clear what is happening. All relevant reduce operations are first performed on

the GSS (list of TStacks), followed by all shift operations. Note that the state value (parse forest) is

hidden by the monadic structure. We continue to flesh-out the implementation by providing definitions

for the shiftAll and reduceAll operations:

These operations closely resemble their respective design models given in figure 3.10, raised to the

monadic level. Note that both rely on encodings of the parse tables as functions. These are called

action and goto and have type signatures:

where

and the data type GLRAction is defined as follows (relate to Figure 3.9):

doActions :: [TStack FID] -> Token -> ST Forest [TStack FID]
doActions gss tok
 = do

gss’ <- reduceAll tok gss
shiftAll tok gss’

shiftAll :: Token -> [TStack FID] -> ST Forest [TStack FID]
shiftAll tok [] = return []
shiftAll tok stks
 = do fid <- addNode (FNode tok [])

return $ merge [push fid st stk | (stk,st) <- stks]

reduceAll :: Token -> [TStack FID] -> ST Forest [TStack FID]
reduceAll tok [] = return []
reduceAll tok (stk:stks)
 = case action (top stk) tok of

Reduce rs -> redAll rs
Shift st rs -> do { ss <- redAll rs ; return $ (stk,st):ss }
Accept -> reduceAll tok stks

 where
 redAll rs = do let reds = concat [reduce stk m n | (m,n) <- rs]

 stks' <- foldM pack stks reds
 reduceAll tok stks'

action :: State -> GSymbol -> GLRAction
goto :: State -> GSymbol -> State

data GLRAction = Shift Int [Reduction]
 | Reduce [Reduction]

 | Accept
 | Error

 deriving Eq

type Reduction = (GSymbol,Int)

type State = Int

CHAPTER 4. IMPLEMENTATION 47

The function reduceAll makes use of an auxiliary function reduce:

Note the use of pop, as described in 4.2.2.

To complete the definition of reduceAll we need to define pack. We considered the packing

mechanism in section 3.2.3, and its function definition is as follows:

pack scans the GSS for a packing candidate (note that there can only be one, since the GSS already

represents a fully-packed list of TStacks). If none is found, a new forest node is created containing the

single analysis and its index is pushed onto the reduced TStack, along with the goto state. The TStack

is then inserted (reverse height ordered) into the GSS. If a packing candidate is found, a new forest node

is created containing the packed analysis and decElem is called to indicate that the old node has one less

referee. The packed node index is then pushed onto the reduced TStack along with the goto state and

inserted into the GSS.

Both reduce and pack use an auxiliary function called addNode – a simple function which adds a

node to the parse forest and returns its index.

pack :: [TStack FID] -> ([FID],TStack FID,GSymbol) -> ST ... (Monad)
pack stks (fids,stk,m)
 = do let st = goto (top stk) m

case fnd (\s -> top s == st && popF s == stk) stks of
 Nothing -> do fid <- addNode (FNode m [fids])

 return $ insert (push fid st stk) stks
 Just (s,ss) -> do let oid = head (vals s)

 (Just (FNode _ ch),f) <- fromS (decElem oid)
 setS f
 fid <- addNode $ FNode m (fids:ch)

 return $ insert (push fid st stk) ss

GSS

children of new
analysis (reduction
rule daughters) reduced TStack

new analysis node
label (reduction
rule mother)

reduce :: TStack FID -> GSymbol -> Int -> [([FID],TStack FID,GSymbol)]
reduce stk m n =
 [(fids,stk',m) | (fids,stk') <- pop n stk]

reduction
candidate

children of new
analysis
(daughters) ancestor

reduction
rule mother

number of
daughters in
reduction rule

reduction
rule mother

CHAPTER 4. IMPLEMENTATION 48

Section 3.3.2 ends with a note on accepting strings of sets of tokens as input rather just individual tokens.

We incorporate this into our implementation model by accepting [[Token]] as the input type to

doParse:

We then modify doActions so that it takes a list of tokens as input, duplicates the GSS for every token

in the list, performs the relevant actions on each and then merges them back into a single GSS upon

completion:

6�5�5 (�������
���
�

In our discussion of the implementation thus far, we have somewhat over-simplified the picture, leaving

out such issues as that of error-handling. We now move on to consider how error-handling can be

incorporated at a monadic level.

We modify the type definition for the ST monad to include a form of exception handling using the

Maybe data type:

Note that we include an extra type variable e, representing a state value in which we can ‘collect’ parse

errors as they occur.

We expand the bind (>>=) operation so that if a Nothing value occurs at any stage in the computation

we halt execution and simply return the value in e. In our design model, such a situation would represent

a total error (see 3.3.3).

We alter the runST function so that it returns both the final state and the error state. In this way we can

display partial errors along with the successful parse. These partial errors can be recorded by means of a

newly defined function, chgE, which applies a given function to the error state:

data ST s e a = MkST (s -> e -> (Maybe(a,s),e))

chgE :: (e -> e) -> ST s e ()

doActions :: [TStack FID] -> [Token] -> ST Forest [TStack FID]
doActions gss toks
 = do

gsss <- sequence acts
return (merge $ concat gsss)

 where
 acts = [reduceAll tok gss >>= shiftAll tok | tok <- toks]

doParse :: [[Token]] -> ST Forest [TStack FID]

CHAPTER 4. IMPLEMENTATION 49

We need some way of triggering a total error, and to this end we define a function called throwE, which

enables us to inject a Nothing value into the computation and thus halt execution, returning only the

error state.

We extend the reduceAll function to handle errors (blank parse table entries) when they arise:

Note that in this implementation we only record the particular token that caused the error. We could

however supply more useful error information by analysing the stack in which the error was found.

If at any stage of the parse there are no TStacks left in the GSS, then a total error has occurred and

throwE is called to terminate the parse. This is accomplished by extending the doActions function to

test for the empty GSS:

We define a new type to represent parse success or failure:

Finally, we extend the top-level function to pattern match on the Maybe value returned by running the

monad and identify a successful parse from a failure:

6�6 ;"��'�
����

The basic implementation model described in this chapter is the result of refining and simplifying the

code over many iterations. However, a number of optimisations were carried out on the basic model

presented in this chapter in order to increase its efficiency. In this section we consider just one of them.

...
 = case action (top stk) tok of

Reduce rs -> redAll rs
Shift st rs -> do { ss <- redAll rs ; return $ (stk,st):ss }
Accept -> reduceAll tok stks
Error -> do { chgE (\es -> tok:es) ; reduceAll tok stks }

...

doActions [] _ = throwE

parse :: [Token] -> GLRResult
parse toks
 = case runST initSM [] (doParse toks) of

(Nothing,e) -> ParseError e -- total error
(Just(f),e) -> ParseOK e f -- success + partial errors

data GLRResult = ParseError [GSymbol]
 | ParseOK [GSymbol] Forest

CHAPTER 4. IMPLEMENTATION 50

Section 5.4.3.1 highlights a specific instance in which profiling was used to identify an area requiring

optimisation. A significant proportion of the expense of packing in the basic implementation is related to

equality testing on TStack objects, a prerequisite for packing candidacy. 5.4.3.1 describes a technique

that dramatically improves its efficiency, involving labelling each TStack node with a unique ID value.

In terms of the implementation this requires an extra field in the TStack type definition:

When we push a new node onto a TStack object, we now need to assign it an ID value. Thus, the type

of push is amended to:

We overload the (==) operator for TStacks so that it simply compares the top node ID:

We must now assign unique ID’s each time we perform push on a TStack in the parser driver. To

accomplish this we extend the monadic structure of the implementation to include a further state element:

Its value will be a list of Ints (initialised to [0..]). Every time we perform push, we will use a

function called readR that takes an Int from the head of the list and returns it:

For example, shiftAll now appears as follows:

Section 5.4.3.1 explains why this optimisation is both correct and efficient.

data TStack a = TS Int -- state
 Int -- node ID
 [(a,TStack a)] -- [(element on arc , child)]

push :: a -> Int -> Int -> TStack a -> TStack a

new element new state ID value

data ST s r e a = MkST (s -> r -> e -> (Maybe(a,s,r),e))

readR :: ST s [Int] e Int
readR = MkST $ \s (i:is) e -> (Just(i,s,is),e)

instance Eq (TStack a) where
 (TS _ id _) == (TS _ id' _) = id == id'

shiftAll tok [] = return []
shiftAll tok stks
 = do fid <- addNode (FNode tok [])

stks' <- sequence (shifts fid)
return $ merge stks'

 where
 shifts fid = [do { nid <- readR ; return (push fid st nid stk) }
 | (stk,st) <- stks]

CHAPTER 4. IMPLEMENTATION 51

6�3 �����������

���������

In this final subsection we consider the modifications made to Happy in order to integrate it with our

implementation of Tomita’s algorithm.

6�3�0 ������	,	�������������

Happy is composed of a number of Haskell modules. The high-level structure of the program, as

illustrated in Figure 3.12, is contained in a module called Main. Figure 3.13 shows diagrammatically

where the modification is made in the high-level structure of Happy to integrate it with the

implementation of Tomita’s algorithm. In practice this means altering the code in the module Main to

include an extra flag (-l) and a conditional statement that triggers the generation of a GLR parser if the –

l flag has been set by the user, and otherwise continues to produce a standard LR parser in the usual way.

As shown in 3.4.2, we allow Happy to generate the LALR parse tables from the input grammar in both

cases, and also to produce additional information about the tables if requested before introducing the

following conditional statement:

Note that OptGLR is the internal name for the –l flag. We pass all the necessary data to the function

produceGLRParser which writes the GLR parser using the given information about the grammar and

the template containing the functional implementation of Tomita’s algorithm.

6�3�$ �������	��	
	�����

We now consider the code added to Happy which combines grammar-specific data with the

implementation of Tomita’s algorithm to produce a GLR parser. This code exists in the form of a new

module added to the source code of Happy called ProduceGLRCode. It exports a single method,

produceGLRParser which is called as part of Happy’s modified high-level structure (see above).

...
if OptGLR `elem` cli
then produceGLRParser outfilename -- specified output file name

 template_dir -- template files directory
 action -- action table (:: ActionTable)
 goto -- goto table (:: GotoTable)
 header -- header from grammar spec
 tl -- trailer from grammar spec
 g -- grammar object

else
...

CHAPTER 4. IMPLEMENTATION 52

The process of generating a GLR parser is one of assembling the various sections of the new parser file in

String format and then outputting them to the designated file. This process is illustrated at a high-level

by the following diagram:

The module contains a function called mkFile which gathers the textual data for each of the blocks

shown above, calling auxiliary functions where necessary, concatenates them and writes them to the

specified output file. Some of the phases, such as copying the code from the template or adding user code

verbatim, are a simple case of grabbing text from a file or variable. Other phases are more complex; for

example to generate the parse table functions we must coerce the data from the relevant tables into a

format that can be written into the parser as a function definition.

Another phase requiring a certain amount of work is that of generating the GSymbol data type from the

input grammar. Values of this type will be used to label the nodes of resulting parse forests. The

GSymbol DT includes representations for the non-terminals of the grammar, as well as the terminals

(tokens – the type of which is specified by the user) and the internal EOF symbol. The grammar-specific

definition for the GSymbol DT is as follows:

Figure 4.4: Breakdown of GLR code generation

User-defined header code
• module declaration
• import/export lists ...

Tomita template

User-specified main function

User-defined trailer code
• lexer ...

‘GSymbol’ type generated from grammar

Parse table functions
(action and goto)

data GSymbol = NT1 | ... | NTn | HappyTok TokenType | HappyEOF

where: n = the number of non-terminals in the grammar
 TokenType = the user-defined type for tokens (terminals)

CHAPTER 4. IMPLEMENTATION 53

Much of the detail regarding the manipulation of internal Happy data structures into GLR parser code is

excluded from this section, but a complete listing of the ProduceGLRCode module can be found in

Appendix C.

6�7 8��	
��*	����
�

The project implements a technique for decoding a parse forest into a list of individual syntax trees

(1.4.1). This is useful for analysis, as it is somewhat difficult to decipher even a moderately complex

parse forest by hand. We use a standard data structure for representing trees:

A forest node can be thought of as an encoding of a number of trees. Bear in mind that a forest node

consists of n analyses, where n ≥ 0. Thus, to decode a forest node into its constituent trees we recursively

decode its children in all analyses, and for each analysis we generate a list of all possible trees derivable

from ordered combinations of the lists of trees for each child, returned by the recursive call. The

recursion is founded in the instance where the forest node has no children (a leaf), in which case we return

a list containing a single corresponding tree leaf. To decode an entire forest, we apply the decoding

operation to its top-level node.

A simple example will help to clarify the decoding process. Consider the following hypothetical parse

forest:

We decode the forest by applying the operation described above to the top-level node S. This calls for the

recursive decoding of nodes A and B, and in turn nodes a, b, c and d. Once the first leaf node a is

reached, the recursion bottoms out and the singleton list [TreeNode a []] is returned. The same is

true for each of the forest leaf nodes. The node A consists of two analyses, each with a single child.

From the first analysis, we have only a single derivable tree, as is the case with the second analysis, and

so decoding A returns the following list of trees:

data Tree a = TreeNode a [Tree a]

S

BA

a b c d

The node labels denote hypothetical grammar
categories:
� upper case for non-terminals
� lower case for terminals

Note that A and B are packed nodes, each containing
two analyses.

CHAPTER 4. IMPLEMENTATION 54

Similarly, decoding B returns:

We now have all the results necessary to decode the top-level node S. It consists of a single analysis with

children A and B, and thus we generate all possible ordered combinations of the trees returned by their

respective decoding calls:

This operation is similar to generating the Cartesian product of two sets, however we have a possible n

sets, where n ≥ 1. The final list of trees returned is:

The Haskell code for the forest decoding process is listed in Appendix D.

Figure 4.5: Forest decoding process

a , b

A A

c , d

B B

a , c

A B

, a , d

A B

, b , c

A B

, b , d

A B

a c

A B

, a d

A B

, b c

A B

, b d

A B

S S S S

CHAPTER 5. RESULTS & EVALUATION 55

���3� �	
 ��
��
��(,�� ����

In this chapter we consider the results achieved during the project, focusing on output from our

implementation of Tomita’s algorithm integrated with Happy (we will henceforth refer to the modified

version of Happy as HappyGLR). We then evaluate the implementation for correctness and efficiency,

using theoretical and profile-based methodology. Finally, comparisons are made with similar

contemporary implementations of Tomita’s algorithm.

3�0 �	
	����
�������
	��+
�
����������

The process of generating a GLR parser using HappyGLR is essentially the same as for a standard LR

parser (see 3.4.1). An input file is supplied, specifying the grammar, along with various related

information. Let us consider the simple ambiguous grammar seen earlier:

An input specification for this grammar would appear similar to the following:

Figure 5.1: Input file for E+E grammar

E � E + E | i

{
module Main where
}

%name parse
%tokentype { Token }

%token
i { Token_i }
'+' { Token_plus }

%%

E : E '+' E { }
| i { }

{
data Token = Token_i
 | Token_plus
 deriving (Show,Eq)

lexer :: String -> [[Token]]
lexer ...

doParse = parse . lexer
}

Parser module header (copied verbatim)

Directives:
� name of main parse function
� type for tokens

Names of tokens as they appear in the
grammar, matched to their type
constructor labels

Grammar rules (first LHS non-terminal is
assumed to be the start symbol)

User-defined code (copied verbatim)
� Enumeration of Token data type
� Lexer function
� Function for tying parser and lexer together

CHAPTER 5. RESULTS & EVALUATION 56

3�$; �" ������D�
��

To make it easier to analyse parse results the project implements techniques for converting parse forests

and lists of syntax trees (decoded from forests – see 4.6) into formats recognised by the graph-

visualisation tool daVinci4. The results presented in this chapter will consist largely of graphs and trees

produced by daVinci.

Packed nodes are represented in daVinci by arrows pointing to small circles. For example:

It should be noted that the ordering of parse forest nodes is not necessarily preserved under daVinci. The

Haskell code that deals with the translation of parse forests and lists of syntax trees into daVinci format is

listed in Appendix E.

3�5 �	
 ��

In this subsection we present a sample of the results obtained from generating GLR parsers for several

ambiguous context-free grammars using HappyGLR.

3�5�0 (E(����''��

Recall the following simple ambiguous grammar:

�����������������������������������
4 See http://www.informatik.uni-bremen.de/daVinci/

E � E + E | i

represents a node with three packed analyses.

and represent single analyses.

CHAPTER 5. RESULTS & EVALUATION 57

Its HappyGLR input specification is given in Figure 5.1. Running the generated parser (through the

daVinci translation mechanism) on the input string ‘i+i+i’ produces the following parse forest:

The forest decodes into the following collection of trees:

This is the output we would expect, representing the ambiguity in associating the + operator. If we

extend our input sentence to ‘i+i+i+i’ the result is the following parse forest:

Figure 5.2: Parse forest: ‘i+i+i’ (daVinci)

Figure 5.3: Syntax trees: ‘i+i+i’ (daVinci)

CHAPTER 5. RESULTS & EVALUATION 58

Note that we now have two levels of packed nodes. The forest decodes into the following collection of

trees:

Figure 5.4: Parse forest:‘i+i+i’ (daVinci)

Figure 5.5: Syntax trees:‘i+i+i+i’ (daVinci)

CHAPTER 5. RESULTS & EVALUATION 59

The following figure illustrates how complexity increases rapidly as a function of the number of +

operators in the input string under our simple ambiguous grammar (see 5.4.1). The forest is the result of

parsing the sentence ‘i+i+i+i+i+i+i+i+i+i’ (9 +’s) and encodes 4862 distinct syntax trees:

3�5�$ ��'"�	�@�����''��

We now consider a simple natural-language grammar for English. Due to its simplicity it is of limited

practical use, but will serve as a basic illustration. The grammar consists of about thirty production rules,

and we will refer to it as SimpleNL. It is listed in Appendix F.

Parsing the sentence “I saw a man in the park with a telescope” under the SimpleNL grammar generates

the following parse forest:

Figure 5.6: Parse forest: 9+’s (daVinci)

CHAPTER 5. RESULTS & EVALUATION 60

Note that non-terminal nodes without children correspond to empty production rules in the grammar. The

forest decodes into the following collection of syntax trees:

Figure 5.7: Parse forest: “I saw a man in the park with a telescope” (daVinci)

CHAPTER 5. RESULTS & EVALUATION 61

Figure 5.8: Syntax trees: “I saw a man in the park with a telescope” (daVinci)

1 2

3 4

5

CHAPTER 5. RESULTS & EVALUATION 62

The five syntax trees correspond to different syntactic interpretations of the input due to ambiguity in the

interpretation of the two prepositional phrases. The following diagram illustrates the structure of each of

the trees, highlighting the part of speech associated with each of the prepositional phrases in each case:

Let us consider another input sentence: “I sing loudly and continuously”. This example is chosen to

highlight the error-handling mechanism of the parser. Parsing this sentence under the SimpleNL

grammar generates the following raw output:

This tells us that the parse has been successful, but that a partial error (see 3.3.3) has occurred while

processing the token adverb ‘continuously’. Recall that the implementation of the error-handling

mechanism only identifies the token at which the error occurred, although it could be extended to return

more useful information (see 4.3.3). The error occurs because the parser attempts to derive the sentence

under the production rule ‘S -> S con S’. The following diagram illustrates this:

Figure 5.9: Syntactic interpretations of “I saw a man in the park with a telescope”.

Scon

ParseOK [HappyTok (Adverb "continuously")] ...

saw a man in the park with a telescope1. I

Subject Verb Object

saw a man in the park with a telescope2. I

saw a man in the park with a telescope3. I

saw a man in the park with a telescope4. I

saw a man in the park with a telescope5. I

Prepositional Phrase

SS �

I sing loudly and continuously

CHAPTER 5. RESULTS & EVALUATION 63

The parse forest generated from the above input sentence is as follows:

The forest appears to have two top-level nodes, but in fact one represents an incomplete analysis arising

from the partial error at ‘continuously’. Complete parse forests (such as the one above) always posses a

unique top-level node from which incomplete analyses can be filtered out. Thus, decoding the forest

results in the single syntax tree:

Figure 5.10: Parse forest: “I sing loudly and continuously” (daVinci)

Figure 5.11: Syntax tree: “I sing loudly and continuously” (daVinci)

Top-level node (unique) Incomplete analysis

CHAPTER 5. RESULTS & EVALUATION 64

The last part of section 4.3.2 describes how the input can be specified in lists of tokens instead of just

single tokens. This can be demonstrated by considering the result of parsing the sentence “she carefully

hands him the vase”, where the lexeme hands can function both as an action verb and a plural noun.

The input, then, is structured as follows:

The resulting raw output begins:

From this, we can see that the analysis in which hands acts as a noun causes a partial error. The resulting

forest decodes into the single following syntax tree, representing the successfully parsed analysis in which

hands functions as an action verb:

Figure 5.12: Syntax tree: “she carefully hands him the vase” (daVinci)

Pronoun
‘she’

Adverb
‘carefully’

Noun
‘hands’

Verb
‘hands’

Pronoun
‘him’

Det
‘the’

Noun
‘vase’

ParseOK [HappyTok (Noun "hands")] ...

,

CHAPTER 5. RESULTS & EVALUATION 65

3�6 (,�� ����

In this section we evaluate the functional implementation of Tomita’s algorithm presented in this report

for correctness and efficiency, providing examples of how profiling was used to optimise the space and

time efficiency of the implementation. We conclude by comparing the implementation with its

contemporaries.

3�6�0 ����	��
	

A formal proof of the correctness of Tomita’s algorithm is beyond the scope of the project, and we appeal

to the reader to consider the correctness of the design and implementation models proposed in this report

in light of such references as [Kip 89] and [Car 93].

An informal method of judging the correctness of the implementation is to analyse the output generated

by the parser under a specific grammar, and ascertain whether or not it is as we would expect, given some

theoretical basis for our expectations. Consider once more the E+E grammar from previous sections:

By thought and manual enumeration we can calculate that for the input string ‘i+i+i’ there are two

possible syntactic interpretations. Similarly we know that if we extend the input string to ‘i+i+i+i’ we

would expect five distinct syntactic interpretations. These results are given in 5.3.1, and thus we know

that our implementation of the algorithm is correct for these simple examples. We can extend this idea by

calculating the number of distinct syntax trees we would expect for a given input string under this

grammar, and then running the parser on the same input, decoding the resulting forest and counting the

number of distinct syntax trees generated. By analysis of the properties of the grammar, it can be deduced

that the following recursive function calculates the number of trees for a given number of ‘+’ operators

(n) in the input string:

The function formalises the following two facts:

� If there are no + operators in the input, there is no ambiguity and only one possible interpretation.

� The total number of interpretations derivable from an input sentence is equal to the sum of the

number of interpretations derivable from each of the states in which a different + operator in the

input gets to be the top node.

E � E + E | i

Σ
i=0

n

Tr(i-1) * Tr(n-i)

Tr(0) = 1

Tr(n) =

CHAPTER 5. RESULTS & EVALUATION 66

We can write the above function in Haskell:

Using this function we can derive the following table:

Running the parser on the corresponding input sentences, decoding the resulting forests and counting the

number of trees generated allows us to construct the following table:

By comparing tables 5.13 and 5.14 it is clear that the output from the parser is as we would expect, at

least as far as the number of trees is concerned.

The results in table 5.14 were produced by generating a list of the syntax trees for a given input, testing

for uniqueness, and counting the number of elements in the list. Although the test does not guarantee that

the set of trees produced by the parser is the complete set of syntactic interpretations for the given input, it

does guarantee the uniqueness of each of the trees generated, and due to the convergence of the results

achieved strongly suggests that the parser is capturing all distinct derivations.

Table 5.13: Results of ‘#+ -> #trees’ function

Table 5.14: Results of counting generated distinct syntax trees

tr 0 = 1
tr n = foldr (+) 0 [tr (i-1) * tr (n-i) | i <- [1..n]]

+’s # syntax trees
1 1
2 2
3 5
4 14
5 42
6 132
7 429
8 1430
9 4862
10 16796

input # distinct syntax trees
i+i 1
i+i+i 2
i+i+i+i 5
i+i+i+i+i 14
i+i+i+i+i+i 42
i+i+i+i+i+i+i 132
i+i+i+i+i+i+i+i 429
i+i+i+i+i+i+i+i+i 1430
i+i+i+i+i+i+i+i+i+i 4862
i+i+i+i+i+i+i+i+i+i+i 16796

CHAPTER 5. RESULTS & EVALUATION 67

Given time, we could construct similar tests for more complex grammars, and thus enhance our belief in

the correctness of the implementation.

3�6�$ (�����	
�-

We now turn our attention to an evaluation of the efficiency of the implementation in terms of both

computation time and memory usage.

3�6�$�0 ��'	���'"�)��-

Tomita originally claimed that his algorithm was O(n3) in general, though possibly worse on densely

ambiguous grammars5. Kipps analyses the algorithm [Kip 89] and presents evidence to suggest that its

complexity is O(np+1) where p is the number of daughters in the longest production in the grammar. We

will consider the complexity of the implementation proposed in this report in light of these claims. To

make matters less complicated, we will constrain our analysis to the familiar E+E grammar:

Let us consider the case in which input strings are simply lists of individual tokens. If we have an input

string of length n (inclusive of the EOF token), then the algorithm has time:

The complexity of doActions is:

The complexity of reduceAll is somewhat difficult to calculate. It recursively processes each

TStack in the list that makes up the GSS, but reductions generate new TStacks that must also be

processed. The number of TStacks in the GSS is bounded by a constant, the number of LR states in the

grammar, 6 in this case (this is so because the top states are guaranteed to be distinct when passed to

reduceAll). When an action other than a reduction is specified for a particular TStack by the parse

table, a single operation is performed and the TStack is removed from consideration. When a reduction

is performed on a TStack, it generates a number of new TStacks, equal to the number of ancestors at

a distance of k from the top node (where k is the number of daughters in the reduction rule). The value of

k is bounded by the number of + operators encountered thus far in the input minus the number of +

operators already analysed at the top level. (the i’th ancestor corresponds to an analysis in which the i’th +

operator below the top node has been reduced).

�����������������������������������
5 See Carroll’s thesis [Car 93], pp. 95-99

O(n) * complexity(doActions)

complexity(reduceAll) + complexity(shiftAll)

E � E + E | i

CHAPTER 5. RESULTS & EVALUATION 68

Each new TStack must be processed in the same way. The number of reductions that can be applied to

a succession of TStacks is bounded by the number of + operators seen thus far in the input. Whenever

a reduction is carried out, the new TStacks must be tested for qualification to be packed. Packing

reduces the order of complexity by the fact that once we have performed a reduction and exposed

TStacks representing an analysis for each + operator stage in the input, all subsequent reductions can be

packed into one of these existing TStacks, giving a bound of O(n2) as opposed to O(2n) for the number

of reductions required in the reduceAll operation. Formulating this gives us the following complexity

for the reduceAll operation:

The complexity of reduce is the number of ancestors (bounded above) times the number of daughters in

the longest production rule in the grammar (3 in this case), thus:

Packing requires us to search the TStacks in the GSS for qualification, and then to update the parse

forest with the relevant node (packed or unpacked). If packing has occurred, we also remove the old

unpacked node if it is no longer referenced by the GSS. Thus, pack has the following complexity:

Because of subtree sharing (see 3.1.1) the number of nodes in the forest grows at a rate of O(n). The add

and delete operations are essentially comparisons mapped over the elements in the parse forest, where an

individual comparison is bounded by a constant, as is the actual adding and deleting of elements. This

leaves the pack function with an overall complexity of O(n). It should be noted, however, that in

practice the operation is quite expensive due to its multiple sub-components.

The overall complexity of reduceAll, then, is

O(6 *) * (complexity(reduce) + complexity(pack))

where n+ = �n/2�

O(n+ * 3) = O(n)

O(n+) + O(f(n)) + O(f(n))

Search for qualification,
bounded by number of +’s.
Assume that comparison
has constant time.

Add a node to the
forest, bounded by
some function of the
input length.

Delete a node,
bounded as for
adding.

O(6 *) * (O(n) + O(n)) = O(n3)

2

n+(n++1)

2

n+(n++1)

CHAPTER 5. RESULTS & EVALUATION 69

The final operation to consider is shiftAll. It consists of two sub-operations:

� add a new node to the parse forest

� push the new elements onto all TStacks in the GSS and merge

The first has time O(n) (see above), and the second has constant time because the number of TStacks in

the GSS is bounded by a constant, therefore shiftAll has time O(n).

Thus the whole implementation has the following time complexity:

Let us test the analysis by comparing the graph of this function with that of the amount of work done by

the parser generated from the grammar in question:

The values for the implementation were generated by running the parser on inputs of varying lengths and

recording the number of reductions6 required for each input length. The results displayed by the graph

support the time complexity analysis given above.

�����������������������������������
6 A reduction is a single step of computation in the underlying lambda calculus.

Figure 5.15: Implementation time complexity graph

O(n) * O(n3) + O(n) = O(n4)

Time Complexity

10

12

14

16

18

20

22

24

5 11 17 23 29 35 41 47

Input

O
ut

pu
t

n4 (log2)
reductions (log2)

CHAPTER 5. RESULTS & EVALUATION 70

The analysis is consistent with Kipps’ evaluation of the algorithm, in which we would expect a time

complexity of O(n4) for the grammar in question.

3�6�$�$ �"��	���'"�)��-

Space complexity for Tomita’s algorithm is based on two factors:

� The space required to store the parse forest as it is grown.

� The space required to maintain the GSS while the parse is in process.

Tomita suggests that his parse forest representation takes O(n3) space in general, though may require

more for densely ambiguous grammars7. Kipps [Kip 89] argues that the space required to maintain the

GSS is O(n2), although Johnson [Joh 89] shows that for some grammars the space required for the GSS

may be exponentially related to the size of the grammar; though this is not the case for the grammars we

have considered in this report.

A formal analysis of the space complexity of the implementation is beyond the scope of the project;

however, in light of the analyses carried out by Kipps and Johnson, we would expect the space

complexity of the implementation to be somewhere in the region of O(n2) to O(n3).

Experimentation yields the following results for the E+E grammar (Grammar 1.5):

�����������������������������������
7 See [Car 93], pp. 95-99

Figure 5.16: Space complexity – full implementation Figure 5.17: Space complexity – recogniser only

Space Complexity - Full

0

2

4

6

8

10

12

14

16

18

1 7 13 19 25 31 37 43 49

Input

O
ut

pu
t

Space Complexity - Recogniser

0

2

4

6

8

10

12

14

16

18

20

1 7 13 19 25 31 37 43 49 55 61

Input

O
ut

pu
t

n3 (log2)

n2 (log2)

heap usage
(log2)

n3 (log2)

n2 (log2)

heap usage
(log2)

CHAPTER 5. RESULTS & EVALUATION 71

Figure 5.16 shows the heap usage of the implementation in relation to the functions n2 and n3. From these

results it appears that the amount of memory used by the implementation is worse than n2, although better

than n3. The results for Figure 5.17 were obtained by removing the sections of the code that construct the

parse forest, essentially converting the implementation into a recogniser. This improves the space

complexity, but still does not do enough to make it O(n2).

We present one final graph, plotting the amount of memory allocated during execution (this is not the

same as the amount of heap space required) against the same two functions. Again we discover that the

complexity is somewhere between O(n2) and O(n3):

3�6�5 �������
�

Profiling was introduced in Chapter 2 as an effective method of iteratively evaluating and improving the

performance of Haskell code. In this subsection we present samples of profiling methods used on the

implementation to improve its efficiency.

3�6�5�0 ��
���	
��	��������
�

Profiling the implementation at a relatively early stage of optimisation generated the following cost centre

statistics:

Figure 5.18: Space complexity – memory allocation

Space Complexity

0

2

4

6

8

10

12

14

16

18

20

1 7 13 19 25 31 37 43 49 55

Input Length

O
ut

pu
t

Allocation (log2)

n2 (log2)

n3 (log2)

CHAPTER 5. RESULTS & EVALUATION 72

The profile makes it clear that pack accounts for almost 90% of the computational expense. Effort was

concentrated on improving the performance of pack, and it was discovered that a major cost of packing

related to equality testing on TStacks. In order to determine whether two TStacks can be packed, we

must test their immediate descendants for equality. In the original implementation, this took O(n) work

because in the worst case we had to scale the depth of the entire tree to ensure equality (bounded by n, the

number of symbols in the input), making the complexity of pack O(n2) and accounting for its high

expense. A novel method of improving this complexity was identified: every new node pushed onto a

TStack is labelled with a unique ID value, which can then be used to compare TStacks at the top

level, without requiring any traversal of the tree (see 4.4 for implementation details). This is correct for

our implementation because new TStacks are created by duplication. Consequently node ID’s are also

duplicated, and thus when two TStacks reach a point where their top level analyses can be packed, it

must be the case that their children represent the same duplicated TStack. This improves the

complexity of pack to O(n), and thus the complexity of the entire algorithm from O(nm) to O(nm-1) where

m is dependent on the grammar. Other less dramatic optimisations were made to pack as a result of

analysing cost centre information, and this was reflected in subsequent profiles, such as the following:

Cost centre profiling was used effectively over many iterations, resulting in code that runs approximately

60 times faster, allocating only around 1.6% as much memory as the original implementation.

Figure 5.19: Cost centre profile before packing optimisation

Figure 5.20: Cost centre profile after packing optimisation

COST CENTRE MODULE %time %alloc

pack Main 89.7 9.1
GC GC 4.4 0.0
getElem SetMap 2.9 0.4
merge TStack 1.5 0.6
getInd SetMap 1.5 12.9
addElem SetMap 1.5 1.9
combine Main 1.5 15.2
vals TStack 0.0 2.5
...

COST CENTRE MODULE %time %alloc

addElem SetMap 20.0 2.6
pack Main 20.0 23.0
main Main 20.0 8.1
addNode Main 20.0 3.8
GC GC 20.0 0.0
vals TStack 0.0 2.0
push TStack 0.0 3.0
...

CHAPTER 5. RESULTS & EVALUATION 73

3�6�5�$ �	�"��������
�

As mentioned in Chapter 2, heap profiling can be used to illuminate the memory behaviour of a program

and identify space leaks.

The following is a heap profile from an early stage of the implementation:

This profile was generated from a parser for the SimpleNL grammar (5.3.2). The gradual increase in heap

size is what we would expect as the GSS grows through the stages of the parse. However, the sudden

jump after 2.5 seconds8 suggests that memory is being used inefficiently during the construction and

manipulation of the parse forest. This was addressed and a number of changes were made, especially to

the operations on the SetMap data type.

�����������������������������������
8 Note that running times reported during heap profiling are inaccurate due to profiling overheads.

Figure 5.21: Early implementation heap profile (SimpleNL grammar)

CHAPTER 5. RESULTS & EVALUATION 74

Subsequent profiles show a much more even spread, along with significantly reduced heap usage:

The memory behaviour of the implementation is clearly illuminated by the following profile, generated

from a parser for the E+E grammar on an input of around 40 tokens:

Figure 5.22: Improved heap profile (SimpleNL grammar)

Figure 5.23: Heap profile (E+E grammar)

CHAPTER 5. RESULTS & EVALUATION 75

Initially the heap grows quickly as new forest nodes are generated but are at this stage unlikely to be

candidates for subtree sharing. We also find that packing is less common during early stages of the parse,

as fewer sub-analyses have already been generated. This rapid growth tails off as the parse progresses,

but remains consistent. Finally, we see a sharp decrease as the EOF token in the input is reached and the

GSS is recursively reduced to a single TStack containing the sentence constituent. Contrast this with

the following profile of the parser stripped of its forest-construction mechanism (just a recogniser)

running on the same input:

Note that growth is more consistent overall – there is no initial rapid increase as we are not storing forest

nodes. Also note that the reduction in overall heap usage is as we would expect.

3�6�6 ��'"���
�

Due to the recency of the work on Tomita’s algorithm, there are few contemporary implementations that

we can compare ours with. However, we have been able to obtain a version written in C, and here we

assess it for efficiency and quality of code in comparison with our implementation. We also briefly

consider the work of Peter Ljunglöf, in which he proposes a purely functional implementation (still in

development).

Figure 5.24: Heap profile – recogniser (E+E grammar)

CHAPTER 5. RESULTS & EVALUATION 76

3�6�6�0 ��D	�
��

This implementation is available as freeware over the Internet. It creates LR(0) parse tables for specified

CF grammars, and produces parse forests for input sentences in the vocabulary of the given grammar.

Although the table generation technique is weaker than that used by HappyGLR, for a simple grammar

such as E+E it produces an identical table. Thus we can provide the same input to both and expect the

same results. The following table shows results from timed executions of the two implementations, under

the E+E grammar:

Because of the inherent extra cost of evaluating functional code, we would expect the C implementation

to perform significantly faster than our Haskell implementation, and this is affirmed by the results in the

table; however this is not really a balanced comparison. The C implementation utilises a different

interpretation of subtree sharing, where identical analyses occurring at different stages in the parse are

maintained distinctly, reducing the need for equality testing on forest nodes9. This increases the speed of

the algorithm, but also increases its space complexity in terms of the resulting parse forest (as illustrated

by the table). The growth of the number of nodes in the parse forest under the E+E grammar is O(n) for

our implementation, whereas for the C implementation it is O(n2).

It should also be noted that our implementation incorporates certain features such as error-handling,

which are absent in the C version.

A significant proportion of the cost of our implementation is incurred by SetMap operations, which

could be optimised by modelling the internal relation as a search-friendly structure such as a binary tree.

A number of other speed increase techniques could be used if necessary, but these must be balanced

against maintaining the quality of the code.

�����������������������������������
9 Note that we are not discussing the validity of the different approaches to subtree sharing, merely their effect on the efficiency

of the algorithm. It should also be noted that our design and implementation models could easily be modified to incorporate
the same type of subtree sharing found in the C version, and this would affect its efficiency accordingly.

Table 5.25: Timed execution comparison

Execution time (secs) Nodes in forestInput
Length Project C Project C
21 0.00 0.00 13 87
41 0.06 0.01 23 272
61 0.24 0.02 33 557
81 0.71 0.04 43 942
121 3.19 0.14 63 2012
161 9.77 0.53 83 3482
201 23.20 1.17 103 5352
241 48.13 2.55 123 7622

CHAPTER 5. RESULTS & EVALUATION 77

A final point relates to the quality and concision of the code. Our implementation is significantly shorter

than the C version, and demonstrates greater clarity and structural elegance10, bearing close resemblance

to the design model on which it is based. The concision of the code is attested to by the fact that the

parser driver for our implementation consists of around 40 lines of code, whereas the C version contains

around 160. Including data structures, the figure is around 170 for our implementation and around 310

for the C version. It should be noted that for our implementation this includes two external, reusable

ADT’s, whereas the data structures for the C version are internal.

3�6�6�$ �!
��F��
�.���

Ljunglöf’s work was mentioned in Chapter 3 in relation to the GSS representation. He proposes a purely

functional implementation of Tomita’s algorithm based on this representation. However, rather than

explicitly generating a packed, shared forest, he integrates the forest with the GSS, relying on the

compiler/interpreter to handle the internal DAG structure of the GSS as well as the shared elements of the

parse forest. This allows elegance of style, but has two significant disadvantages:

� Although the space complexity of the implementation is comparable to Tomita’s, the time

complexity is exponential in the worst case, as the implementation does not provide a mechanism

for local ambiguity packing.

� Because of the implicit nature of the forest, it cannot be directly extracted without the use of impure

extensions to Haskell11.

The developmental status of Ljunglöf’s implementation has prevented us from making direct comparisons

with ours, although it appears that our implementation may serve as better general-purpose model.

�����������������������������������
10 Despite the subjectivity associated with the concept of elegance, a visual comparison of the two implementations should

convince the reader of the validity of this statement!
11 See [Lju 02] Chapter 6, esp. 6.6 Discussion – pg. 91

CHAPTER 6. CONCLUSIONS 78

���7� ��
��
��

In this final chapter we consider the achievements of the project in light of the objectives given in Chapter

1 (1.3), and the project deliverables (1.4). We reflect on the success of the project in light of the overall

objectives also given in Chapter 1, presenting the advantages and disadvantages of the proposed solution.

Finally, we present possible avenues for future development.

7�0 ���!	�������	,	'	
�

We will consider in turn each of the major project objectives and discuss whether or not they have been

met, and how they relate to specific project deliverables.

7�0�0 4'"�	'	
�����
������'����
���������'��
���
�	��

This is the main objective of the project and has clearly been met by the implementation modelled in

Chapter 3, specified in Chapter 4 and evaluated in Chapter 5. A prototype implementation is part of the

basic deliverable for the project (1.4.1), although the final implementation is a result of many subsequent

iterative steps of refinement. The advantages and disadvantages of our implementation are discussed in

6.2.1.

7�0�$ 4
�	������
�<������""-

Integration of the implementation with Happy forms part of the intermediate deliverable (1.4.2). Section

3.4 describes how the project meets this objective, and section 4.5 outlines the modifications made to

Happy. The success of the integration (robustness, transparency etc.) is discussed later.

7�0�5 �
��-
�
��
��(,�� ����

In chapter 5 we analyse and evaluate different aspects of the implementation, looking at both time and

space orders as well as results from profiling. This forms part of the advanced deliverable for the project

(1.4.3).

7�0�6 8 ���	����

�&�����	

Chapter 1 mentions a number of other possible developments that could be pursued, mostly relating to the

processing of parse forests. There has not been time to pursue these options as part of this project, and

they remain for future research (see 6.3).

CHAPTER 6. CONCLUSIONS 79

7�$;,	������ ��	

Section 1.3.5 states that the overall success of the project depends on:

� Correctness, efficiency and maintainability of the functional implementation of Tomita’s algorithm.

� Thorough analysis and evaluation of the implementation.

� Transparent integration with Happy.

We will look at each in turn, discussing the advantages and disadvantages of our proposed solutions

where appropriate.

7�$�0 4'"�	'	
�����
�����	��
	

#�(�����	
�-��
�����
���
�&����-

In this report we have proposed design and implementation models for a functional version of Tomita’s

algorithm, written in Haskell. We believe it shows a marked improvement in terms of clarity and

maintainability over existing imperative implementations, attested to by its concision and close

resemblance to the design model (see 5.4.4). We have presented evidence to suggest that it is correct,

although further rigorous analysis would need to be carried out before this could be claimed conclusively.

We have carried out tests to show that it is relatively efficient on simple grammars, although as expected,

noticeably slower than comparable imperative implementations. A number of further optimisations could

be made to narrow this performance gap, but they must be weighed against any ensuing loss of code

quality. To summarise, the advantages and disadvantages of our proposed solution include:

Advantages:

� Sound design model, taking advantage of the benefits offered by functional programming.

� Concise, clear and maintainable implementation of the design model.

� Robust, general framework for further development.

Disadvantages:

� Possible improvements needed in terms of time and space efficiency.

� Unclear at this point as to scalability for realistic wide-coverage grammars. Some tests have been

carried out on the English grammar used in LOLITA, suggesting that effort needs to be concentrated

on efficiently encoding large parse tables.

CHAPTER 6. CONCLUSIONS 80

7�$�$ �
��-
�
��
��(,�� ����

In chapter 5, we provide a reasonably thorough analysis and evaluation of our implementation, fulfilling

the criteria for the project. Further analysis could be done on the space complexity of the algorithm, as

well as its time complexity in general under an arbitrary grammar.

7�$�5 4
�	������
�<������""-

The overall objectives of the project as stated in 1.3.5 include the provision of a transparent integration of

our implementation of Tomita’s algorithm with the Haskell parser-generator Happy. This requires that a

user familiar with Happy should be able to use HappyGLR without difficulty. It is clear from section 3.4

that the mechanism for generating a GLR parser under HappyGLR is indeed very similar to that for a

standard LR parser. Most of the features available in Happy have been incorporated into HappyGLR,

although a number of features are missing, including the following:

� The provision of error-catching production rules, using the happyError mechanism.

� The provision of embedded code to automatically transform parse trees into Haskell expressions.

The first of these could be implemented fairly straightforwardly into the proposed model, but the second

presents more of a challenge, requiring research into such issues as high-level context in parse forests (see

4.3.3).

7�5 8 � �	�*	,	��"'	
�

There are many areas of future development related to the work carried out in this project. The parsing

mechanism could be improved both in time and space efficiency as well as in such areas as error handling

– considering how errors can be usefully and accurately reported. This draws on joint research into the

development of functional programming and parsing techniques.

We have already mentioned the possibility of embedding code into GLR parsers under HappyGLR

(3.4.3). A related area is that of processing complete parse forests once they have been generated. Parse

forests allow us to efficiently store large amounts of ambiguous syntactic information, but we are usually

required to disambiguate this information before it can be used effectively a specific application domain.

For example, in a natural language processing system, we can use an implementation of a parsing

technique such as the one proposed in this report to generate a parse forest for an input sentence. The

various syntactic representations represented by the forest must then be analysed semantically in order to

isolate the intended meaning from the various possibilities.

CHAPTER 6. CONCLUSIONS 81

When considering this type of processing, we seek to utilise the efficiency of the parse forest

representation to reduce the amount of computation required; for example, processing shared subtrees

multiple times only if their high-level context requires it.

7�6 ���
�� ��
���	'���

We conclude by claiming that the overall objectives of the project have been met. We have presented a

concise, maintainable functional implementation of Tomita’s algorithm that is both correct and

reasonably efficient, and have shown this to be the case by analysis and evaluation. We have also

presented an integration of our implementation with Happy, and successfully used it to generate GLR

parsers for a number of ambiguous grammars.

REFERENCES 82

�	�	�	
�	

[Aho 86] Aho A., Sethi R., Ullman J. (1986): Compilers – Principles, Techniques and Tools, Bell
Telephone Labs

[Alo 97] Alonso M., Cabrero D., Vilares M. (1997): A New Approach to the Construction of
Generalised LR Parsing Algorithms, Universidad de La Coruna

[App 98] Appel A. (1998): Modern Compiler Implementation in Java, Cambridge University Press

[Bil 89] Billot S., Lang B. (1989): The Structure of Shared Forests in Ambiguous Parsing, INRIA
and Universite d’Orleans

[But 92] Butler C., (1992): Computers and Written Texts, Basil Blackwell Ltd.

[Cal 97] Callaghan P. (1997): An Evaluation of LOLITA and related Natural Language Processing
Systems, University of Durham

[Car 93] Carroll J. (1993): Practical Unification-Based Parsing of Natural Language, University of
Cambridge Computer Laboratory

[Cry 87] Crystal D. (1987): The Cambridge Encyclopedia of Language, Cambridge University Press

[Dow 85] Dowty D., Karttunen L., Zwicky A. (1985): Natural Language Parsing – Psychological,
Computational, and Theoretical Perspectives, Cambridge University Press

[Eng 00] English J. (2000): The Brighton University Resource Kit for Students

[Ear 70] Earley J. (1970): An Efficient Context-Free Parsing algorithm

[Fin 96] Finkel R. (1996): Advanced Programming Language Design, Addison-Wesley

[Gai 95] Gaizauskas R., Cunningham H. and Wilks Y. (1995): A General Architecture for Text
Engineering (GATE) -- a new approach to Language Engineering R & D, Department of
Computer Science, University of Sheffield

[Gri 86] Grishman R. (1986): Computational Linguistics, Cambridge University Press

[Gru 00] Grune D., Bal H., Jacobs C., Langendoen G. (2000): Modern Compiler Design, John Wiley
and Sons Ltd.

[Hol 90] Holub A. (1990): Compiler Design in C, Prentice-Hall Inc.

[Hun 81] Hunter R. (1981): The Design and Construction of Compilers, John Wiley and Sons Ltd.

[Joh 89] Johnson M. (1989): The computational complexity of Tomita’s algorithm, Proceedings of the
1st International Workshop on Parsing Technologies, Pittsburgh, PA

[Kip 89] Kipps J. (1989): Analysis of Tomita’s algorithm for general context-free parsing,
Proceedings of the 1st International Workshop on Parsing Technologies, Pittsburgh, PA

[Lju 01] Ljunglof P. (2001): Chapter 6, Licentiate Thesis (draft – November 2001)

[Lju 02] Ljunglof P. (2002): Chapter 6, Licentiate Thesis (final draft – March 2002)

REFERENCES 83

[Mar 00] Marlow S., Gill A. (2000): Happy User Guide

[Nij 80] Nijholt A. (1980): Context-Free Grammars: Covers, Normal Forms, and Parsing, Springer-
Verlag

[Pey 99] Peyton-Jones S. (1999): Report on the Programming Language Haskell 98

[Pey 00] Peyton-Jones S., et al. (2000): Tackling the awkward squad: monadic input/output,
concurrency, exceptions, and foreign-language calls in Haskell

[Sch 96] Schiehlen M. (1996): Semantic Construction from Parse Forests, Institute for
Computational Linguistics, University of Stuttgart

[Sik 93] Sikkel K., op den Akker R. (1993): Predictive Head-Corner Chart Parsing, GMD – German
National Research Center for Information Technology (Sikkel), University of Twente,
Computer Science Dept. (Akker)

[Sik 97] Sikkel K., Nijholt A. (1997): Parsing of Context-Free Languages, GMD – German National
Research Center for Information Technology (Sikkel), University of Twente, Computer
Science Dept. (Nijholt)

[Sik 98] Sikkel K. (1998): Parsing Schemata and Correctness of Parsing Algorithms, GMD –
German National Research Center for Information Technology

[Tan 93] Tanaka H., Tokunaga T., Suresh K., Kentaro I. (1993): Natural Language Analysis and
Generation Technologies, Department of Computer Science, Tokyo Institute of Technology

[Tho 99] Thompson S. (1999): Haskell, The Craft of Functional Programming Second Edition,
Addison Wesley

[Tom 85] Tomita M. (1985): An efficient context-free parsing algorithm for natural languages, In
proceedings of the 9th International Joint Conference on Artificial Intelligence, Los Angeles,
CA.

[Wik 01] (2001): Wikipedia (free online encyclopaedia), http://www.wikipedia.com/

APPENDICES 84

�""	
��)���=��	���"��*�/

(Module declaration omitted)

%--

> data SetMap a = SM [Int] -- unused indices
> [Element a] -- the relation

> data Element a = EL (Int,a) -- key-->value mapping
> Int -- uses of element

%--

> (<>) x y = (x,y)

> initSM :: SetMap a
> initSM = SM [0..] []

> getElem :: Int -> SetMap a -> Maybe a
> getElem i (SM _ rel)
> = case find (\(EL (k,_) _) -> i==k) rel of
> Nothing -> Nothing
> Just (EL (_,v) _) -> Just v

> addElem :: Eq a => a -> SetMap a -> (Int,SetMap a)
> addElem e sm@(SM ks@(i:is) rel)
> = case fnd (\(EL (_,v) _) -> v==e) rel of
> Nothing -> i <> SM is (EL (i,e) 1 : rel)
> Just (EL (k,_) j,r) -> k <> SM ks (EL (k,e) (j+1) : r)

> decElem :: Int -> SetMap a -> (Maybe a,SetMap a)
> decElem i (SM is rel)
> = case fnd (\(EL (k,_) _) -> k==i) rel of
> Nothing -> Nothing <> SM is rel
> Just (EL e@(k,v) 1,r) -> Just v <> SM (i:is) r
> Just (EL e@(k,v) j,r) -> Just v <> SM is (EL e (j-1) : r)

> indices :: SetMap a -> [Int]
> indices (SM _ rel) = [i | EL (i,_) _ <- rel]

> assocs :: SetMap a -> [(Int,a)]
> assocs (SM _ rel) = [(k,v) | EL (k,v) _ <- rel]

%--

> fnd :: (a -> Bool) -> [a] -> Maybe (a,[a])
> fnd _ [] = Nothing
> fnd p (x:xs) | p x = Just (x,xs)
> | otherwise = case fnd p xs of
> Just (x',xs) -> Just (x',x:xs)
> _ -> Nothing

%--
Show instance

> instance Show a => Show (SetMap a) where
> show (SM _ rel)
> = let fn = \(EL e _) -> show e ++ ","
> in concat ["{" , init $ concat (map fn rel) , "}"]

APPENDICES 85

�""	
��)���=���������*�/

(Module declaration omitted)

%--

> data TStack a = TS Int -- state
> Int -- height
> Int -- ID
> [(a,TStack a)] -- (element on arc , child)

> instance Show a => Show (TStack a) where
> show (TS st _ id ch) = show st ++ "[" ++ concat (map show ch) ++ "]"

> instance Eq (TStack a) where
> (TS _ _ v _) == (TS _ _ v' _) = v==v'

> instance Ord (TStack a) where
> compare (TS _ h _ _) (TS _ h' _ _)
> | h <= h' = GT
> | otherwise = LT

> initTS id = TS 0 1 id []

> push :: a -> Int -> Int -> TStack a -> TStack a
> push x st id stk@(TS _ h _ _) = TS st (h+1) id [(x,stk)]

> pop :: Int -> TStack a -> [([a],TStack a)]
> pop 0 ts = [([],ts)]
> pop n (TS _ _ _ ch) = [(xs ++ [x] , stk')
> | (x,stk) <- ch
> , let rec = pop (n-1) stk
> , (xs,stk') <- rec]

> popF :: TStack a -> TStack a
> popF (TS _ _ _ ((_,c):_)) = c

> top :: TStack a -> Int
> top (TS st _ _ _) = st

> vals :: TStack a -> [a]
> vals (TS _ _ _ ch) = fst $ unzip ch

> height :: TStack a -> Int
> height (TS _ h _ _) = h

> merge :: [TStack a] -> [TStack a]
> merge stks
> = [TS st h id ch
> | st <- nub (map top stks)
> , let ch = concat [x | TS st' _ _ x <- stks , st==st']
> h = foldl1 max [x | TS st' x _ _ <- stks , st==st']
> id = head [x | TS st' _ x _ <- stks , st==st']
>]

APPENDICES 86

�""	
��)��������� �	������	�'�� �	/

> module ProduceGLRCode (produceGLRParser) where

> import Grammar
> import Array
> import Char (isUpper)
> import List (nub)

%--
File and Function Names

> tomTempl td = td ++ "/Tomita.lhs"
> parseName g = fst3 $ head (starts g)

%--
General Functions

> fst3 (x,_,_) = x
> fst4 (x,_,_,_) = x
> snd4 (_,x,_,_) = x

> addArrow str
> | str == [] || head str == '>'
> = str
> | otherwise
> = "> " ++ str

%--
Main exported function

> produceGLRParser outfilename template_dir action goto header trailer g
> = do
> let name = takeWhile (/='.') outfilename ++ ".lhs"
> let gsMap = mkGSymMap g
> let tbls = mkTbls action goto gsMap g
> mkFile name tbls (parseName g) template_dir header trailer g

%--
Function that generates the file containing the Tomita parsing code.
Most of this code is taken from the template, whose name is given at
the top of this file. Its location is obtained from the main Happy driver.

> mkFile :: FilePath -- Output file name
> -> String -- LR tables - generated by 'mkTbls'
> -> String -- Start parse function name
> -> String -- Templates directory
> -> Maybe String -- Module header
> -> Maybe String -- User-defined stuff (token DT, lexer etc.)
> -> Grammar -- Happy Grammar
> -> IO ()
>
> mkFile flname tables start templdir header trailer g
> = do
> templ <- readFile (tomTempl templdir)
> case trailer of
> Nothing -> error "Incomplete grammar specification!"
> Just str -> writeFile flname (content templ str)
> where

APPENDICES 87

> content tomitaStr userInfo
> = unlines [moduleDec
> , tomitaStr
> , parseFn
> , unlines $ map addArrow (lines userInfo)
> , unlines [mkGSymbols g]
> , typeForToks
> , tables]
> where
> parseFn = unlines [concat ["> " , start , " = tomita_parse "]]
> typeForToks = unlines ["> type UserDefTok = " ++ token_type g]
> moduleDec
> = case header of
> Nothing -> ""
> Just h -> unlines [unlines $ map addArrow (lines h)]

%--
> mkTbls :: ActionTable -- Action table from Happy
> -> GotoTable -- Goto table from Happy
> -> [(Int,String)] -- Internal GSymbol map (see below)
> -> Grammar -- Happy Grammar
> -> String
> mkTbls action goto gsMap g
> = unlines [writeActionTbl action gsMap g
> , writeGotoTbl goto gsMap]

%--
Create a mapping of Happy grammar symbol integers to the data representation
that will be used for them in the GLR parser.

> mkGSymMap :: Grammar -> [(Int,String)]
> mkGSymMap g
> = [(i, (token_names g) ! i)
> | i <- tail $ non_terminals g] -- Non-terminals
> ++ [(i, "HappyTok (" ++ mkMatch tok ++ ")")
> | (i,tok) <- token_specs g] -- Tokens (terminals)
> ++ [(eof_term g,"HappyEOF")] -- EOF symbol (internal terminal)
> where
> mkMatch tok = unwords $ replace "$$" "_" (words tok)

> replace :: String -> String -> [String] -> [String]
> replace thisStr withStr inHere
> = map (\wrd -> if wrd == thisStr then withStr else wrd) inHere

> toGSym gsMap i
> = case lookup i gsMap of
> Nothing -> error "No representation for symbol " ++ show i
> Just g -> g

%--
Take the ActionTable from Happy and turn it into a String representing a
function that can be included as the action table in the GLR parser.

> writeActionTbl :: ActionTable -> [(Int,String)] -> Grammar -> String
> writeActionTbl acTbl gsMap g
> = unlines [concat [mkLines , errorLine]]
> where
> name = "action"
> mkLines = concat $ map mkState (assocs acTbl)
> errorLine = concat ["> " , name , " _ _ = Error"]
> mkState (i,arr)
> = unlines $ filter (/="") $ map (mkLine i) (assocs arr)

APPENDICES 88

> mkLine state (symInt,action)
> = case action of
> LR'Fail -> ""
> LR'MustFail -> ""
> _ -> concat [startLine , mkAct action]
> where
> startLine
> = concat ["> " , name , " " , show state , " (" , getTok , ") = "]
> getTok = toGSym gsMap symInt
> mkAct act
> = case act of
> LR'Shift newSt _ -> "Shift " ++ show newSt ++ " []"
> LR'Reduce r _ -> "Reduce " ++ "[" ++ mkRed r ++ "]"
> LR'Accept -> "Accept"
> LR'Multiple as _ ->
> let as' = nub as in
> case ([st | LR'Shift st _ <- as'],[r | LR'Reduce r _ <- as']) of
> ([],rs) -> "Reduce " ++ mkReds rs
> ([st],rs) -> "Shift " ++ show st ++ " " ++ mkReds rs
> where
> rule r = lookupProdNo g r
> lhs r = toGSym gsMap (fst4 $ rule r)
> arity r = show $ length (snd4 $ rule r)
> mkRed r = "(" ++ lhs r ++ "," ++ arity r ++ ")"
> mkReds rs = "[" ++ tail (concat ["," ++ mkRed r | r <- rs]) ++ "]"

%--
Do the same with the Happy goto table.

> writeGotoTbl :: GotoTable -> [(Int,String)] -> String
> writeGotoTbl goTbl gsMap
> = unlines [mkLines]
> where
> name = "goto"
> mkLines = concat $ map mkState (assocs goTbl)
>
> mkState (i,arr)
> = unlines $ filter (/="") $ map (mkLine i) (assocs arr)
>
> mkLine state (ntInt,goto)
> = case goto of
> NoGoto -> ""
> Goto st -> concat [startLine , show st]
> where
> startLine
> = concat ["> " , name , " " , show state , " " , getGSym , " = "]
> getGSym = toGSym gsMap ntInt

%--
Create the 'GSymbol' ADT for the symbols in the grammar

> mkGSymbols :: Grammar -> String
> mkGSymbols g = concat [dec
> , tail $ concat ["| " ++ sym ++ " " | sym <- syms]
> , tok
> , eof
> , der]
> where
> syms = [(token_names g) ! i | i <- tail (non_terminals g)]
> dec = "> data GSymbol = "
> tok = "| HappyTok " ++ token_type g ++ " "
> eof = "| HappyEOF" ++ "\n"
> der = "> deriving (Show,Eq)"

APPENDICES 89

�""	
��)�*������*	���	��'�� �	/

> module GLRDecoder (Tree(..) , trees , prTrees) where

> import SetMap
> import Maybe
> import List
> import <GLR Parser module>

%--
Data types and structures

> data Tree a = TNode a [Tree a]
> |
> TLeaf a
> deriving Eq

%--
Show functions

> instance Show a => Show (Tree a) where
> show tree = showTree 0 tree

> showTree :: Show a => Int -> Tree a -> String
> showTree i (TLeaf nc) = concat [spc i , show nc , nl]
> showTree i (TNode nc trees)
> = concat [spc i , show nc , nl , showSubTrees]
> where
> showSubTrees = concat $ map (showTree (i+2)) trees

> nl = "\n"
> spc n = take n $ repeat ' '

%--
Decoding process

> prTrees :: GLRResult -> IO ()
> prTrees (ParseError es) = putStr $ "Parse Failed!\n" ++ show es
> prTrees (ParseOK es fSM) = putStr $ show es ++ (unlines $ map show doTrees)
> where
> doTrees = trees fSM

> trees :: Forest -> [Tree GSymbol]
> trees fSM = let topNode = head $ indices fSM
> in mkTree fSM topNode

> mkTree :: Forest -> Int -> [Tree GSymbol]
> mkTree sm fID
> = case (fromJust $ getElem fID sm) of
> FNode nc [] -> [TLeaf nc]
> FNode nc fss -> mkNode nc sm fss

> mkNode :: GSymbol -> Forest -> [[Int]] -> [Tree GSymbol]
> mkNode nc sm fss
> = [TNode nc ts
> | fs <- fss
> , ts <- cross_prod (map (mkTree sm) fs)]

> cross_prod :: [[a]] -> [[a]]
> cross_prod [] = [[]]
> cross_prod (as:ass) = [b:bs | b <- as , bs <- cross_prod ass]

APPENDICES 90

�""	
��)�(���8��	
���*D�G���		
��*D�'�� �	
/

(Skeleton code provided by Paul Callaghan, used with permission)

> module ForestToDV (toDV) where

> import SetMap

> import Main

> import DaVinciTypes hiding (Edge(..) , Node(..))
> import qualified DaVinciTypes (Edge(..) , Node(..))
> import DaVinciAttributes

--

> show_gsymbol (HappyTok x) = show x
> show_gsymbol t = show t

> g2n (n, FNode x [bs])
> = mk_box id (show_gsymbol x)
> $ [DaVinciTypes.R (NodeId $ show j) | j <- bs]
> where
> id = show n

> g2n (n, FNode x bss)
> = mk_box id (show_gsymbol x)
> $ [mk_circle (id ++ "." ++ show i) ""
> [DaVinciTypes.R (NodeId $ show j)
> | j <- js]
> | (i,js) <- zip [0..] bss]
> where
> id = show n

the following create daVinci node representations

> mk_box = mk_node box_t
> mk_circle = mk_node circle_t
> mk_plain = mk_node text_t

> mk_node a id nm ts
> = DaVinciTypes.N (NodeId id) (Type "") [a,text nm]
> $ [(mk_edge id n) t | (n,t) <- zip [1..] ts]

> mk_edge id child_no t@(DaVinciTypes.R (NodeId id2))
> = DaVinciTypes.E (EdgeId eId) (Type "") [] t
> where
> eId = concat [id,":",id2,"(",show child_no,")"]

> mk_edge id child_no t@(DaVinciTypes.N (NodeId id2) _ _ _)
> = DaVinciTypes.E (EdgeId eId) (Type "") [] t
> where
> eId = concat [id,":",id2,"(",show child_no,")"]

> toDV :: String -> IO ()
> toDV s
> = do case (doParse s) of
> ParseOK _ f -> let dv = show $ map g2n $ assocs f
> in writeFile "out.daVinci" dv
> _ -> error "Parse Error!"

APPENDICES 91

> module TreesToDV (toDV) where

> import SetMap

> import GLRDecoder
> import Main

> import DaVinciTypes hiding (Edge(..) , Node(..))
> import qualified DaVinciTypes (Edge(..) , Node(..))
> import DaVinciAttributes

--

> show_gsymbol (HappyTok x) = show x
> show_gsymbol t = show t

> tree2DVNode tree_id = tree2DVNode_ (show tree_id ++ "R")

> tree2DVNode_ id (TLeaf x)
> = [mk_box id (show_gsymbol x) []]

> tree2DVNode_ id (TNode x children)
> = thisNode : concat [tree2DVNode_ (id ++ show i) c
> | (i,c) <- zip [1..] children]
> where
> thisNode = mk_box id (show_gsymbol x) childRefs
> childRefs =
> [DaVinciTypes.R (NodeId $ id ++ show i) | (i,c) <- zip [1..] children]

the following create daVinci node representations

> mk_box = mk_node box_t
> mk_plain = mk_node text_t

> mk_node a id nm ts
> = DaVinciTypes.N (NodeId id) (Type "") [a,text nm]
> $ [(mk_edge id n) t | (n,t) <- zip [1..] ts]

> mk_edge id child_no t@(DaVinciTypes.R (NodeId id2))
> = DaVinciTypes.E (EdgeId eId) (Type "") [] t
> where
> eId = concat [id,":",id2]

> toDV :: String -> IO ()
> toDV s
> = do
> let p = doParse s
> case p of
> ParseOK _ f ->
> do
> let ts = trees f
> writeFile "out.daVinci" $ show (dvTrees ts)
> _ -> error "Parse Error!"
> where
> dvTrees ts = concat $ [tree2DVNode i t | (i,t) <- zip [1..] ts]

APPENDICES 92

�""	
��)�8�����'"�	@�����''���
"	���������
/

{
module Main (main
 , doParse
 , GLRResult(..)
 , Forest
 , ForestNode(..)
 , GSymbol(..)
 , GLRResult(..)

)
where

import System
import NLToken <defined in a separate module>
import NLLexer <defined in a separate module>
}

%name parse
%tokentype { NLToken }

%token
n { Noun $$ }
vs { StateOfBeingVerb $$ }
va { ActionVerb $$ }
pro { Pronoun $$ }
det { Det $$ }
prep { Prep $$ }
adj { Adjective $$ }
adv { Adverb $$ }
con { Conjunction $$ }
',' { Comma }

%%

S : SP VP { }
| S con S { }

SP : NP { }

VP : AVP { }
| SBVP { }

AVP : AV { }
| AV O ADVP { } -- I saw him in the park / I hit him hard
| AV IDO O { }

AV : ADVP va ADVP { }

SBVP : vs { }
| vs O { } -- am a cold person
| vs adj { } -- am cold
| vs PP { } -- am in the bath

ADVP : adv con ADVP { } -- gently and carefully
 | adv ADVP { }
 | PP ADVP { }
 | { }

O : NP { }

IDO : NP { }

APPENDICES 93

NP : pro { }
 | det N { }
 | NP PP { }

N : N N { }
 | ADJ N { }
 | n { }

ADJ : adj ',' ADJ { }
 | adj ADJ { }
 | adj { }

PP : prep NP { }

{
doParse = parse.nLLexer

main :: IO ()
main = do
 s:_ <- getArgs
 case parse (nLLexer s) of
 ParseOK es f -> putStr $ "OK: " ++ show es ++ "\n" ++ show f ++ "\n"
 ParseError es -> putStr $ "ERROR:" ++ show es ++ "\n"
}

