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ABSTRACT
We present a classification model for semi-structured doc-
uments based on statistical language modelling theory which
outperforms extant approaches to spam filtering on the Ling-
Spam email corpus [1]. We also introduce two variants of
a novel discounting technique for higher-order N -gram lan-
guage models developed in the light of the spam filtering
problem.

Categories and Subject Descriptors
I [Computing Methodologies]: Document and Text Pro-
cessing; I.7 [Document and Text Processing]: Doc-
ument Capture; I.7.5 [Document Capture]: Document
analysis—document classification, spam filtering

General Terms
Algorithms, Performance, Theory

Keywords
backing off, generative classification model, interpolation
scheme, language model, deleted interpolation estimation,
discounting, distribution smoothing, linear interpolation, semi-
structured document classification

1. INTRODUCTION
The problem of unsolicited email, or spam, is of serious and
growing concern in our digital age1. This study is concerned
with a method of addressing the problem by filtering email
to remove spam upon receipt, a technique that has recently
begun to receive much attention.

2. STATISTICAL SPAM FILTERING
The spam filtering problem can be viewed as an instance
of a text classification problem [12], on the basis that most
email contains some form of identifiable textual content. In

1See research by MessageLabs (www.messagelabs.co.uk) and
Ferris (www.ferris.com).

fact, the structure of email is richer than that of flat text,
with meta-level features such as the fields found in MIME
compliant messages (Subject, To, From, Content-Type etc.).
In light of this, we present the problem as one of semi-
structured document classification.

Some of the first published work on statistical spam filtering
was carried out by Sahami et al. [10] using a multi-variate
Bernoulli NB model; however the training and test sets are
small (less than 2000 total messages), and not publicly avail-
able, thus rendering the experiments non-repeatable.

Androutsopoulos et al. [1] present the first results for spam
filtering on the LingSpam corpus, comparing a multinomial
NB classifier with a kNN variant. Their implementation of
NB outperformed kNN in the reported experiments. Car-
reras and Marquez [2] build on this work, publishing im-
proved results on the LingSpam corpus using boosting deci-
sion trees with the AdaBoost algorithm.

Drucker, Wu and Vapnik [4] publish results comparing the
use of SVM’s with various other discriminative classifica-
tion techniques on the spam filtering problem, with binary-
featured SVM’s and boosting decision trees performing best
overall. Unfortunately the test sets they used are not pub-
licly available.

3. CLASSIFICATION MODEL
3.1 Introduction
The classification model we present can be seen as an ex-
tension of extant generative text classification models such
as the Näıve Bayesian models presented by McCallum and
Nigam [8] and Grobelnik and Mladenic [5]. However, it dif-
fers in two significant ways. Firstly it provides a method of
capturing local phrasal dependency by incorporating smoothed
higher-order N -gram language models2. This avoids un-
desirable violations of the attribute independence assump-
tion when attempting to incorporate higher-order N -grams
directly into a näıve Bayesian model. Secondly, it pro-
vides a motivated framework for taking advantage of the
semi-structured nature of documents such as email messages
through the use of multiple language model component in-
terpolation and optimisation techniques.

2We use N -grams for efficiency and simplicity; however, the
classification model does not preclude the use of more ad-
vanced LM’s with more effective syntactic/semantic analy-
sis.



Although we only consider application of the proposed clas-
sification model to the 2-class spam filtering problem, it is
also applicable to the more general N-class semi-structured
document classification problem.

3.2 Formal Classification Model
We use the following terminology and definitions:

• Document : a domain-specific, discrete item of infor-
mation (i.e. a single news-story, email message, etc.).

• Word : an atomic unit within a document (note that
this is broader than the linguistic notion; for instance,
a ’smiley’ is considered to be a word).

• Field : a (possibly recursive) meta-level structure con-
sisting of a label, and a finite number of words (and
sub-fields).

• Class: a predefined (possibly infinite) set of docu-
ments, usually homogeneous with respect to a specified
aspect of the information they contain (i.e. topic).

• Classification: a mapping of a given document to a
given class.

We also make the following assumptions:

1. We assume that a document belongs to exactly one
class, though the model can quite easily be extended to
account for documents belonging to arbitrarily many
classes.

2. We assume that a document is structured into exactly
L fields, and that each field is non-recursive, consisting
of a finite sequence of words.

3. We assume that the fields within a document are in-
dependent of each other.

4. We assume that classification is carried out within a
single domain, and within that domain, all documents
have the same structure.

Given a set of documents {D1, . . . , DM} and a set of classes
{C1, . . . , CN}, we seek to discover a set of classifications of
the type Di → Cj for i = 1 . . . M where j ranges from 1 . . . N
(given assumption 1).

In the classic generative classification framework, the poste-
rior probability of each class is estimated for the document
in question, and the decision rule formulated from a direct
comparison of these probabilities. We adopt this approach,
resulting in the following formulation for the decision rule:

Decide(Di → Cj) where j = arg max
k

[P (Ck|Di)] (1)

Under assumptions 2, 3 and 4, we define the posterior prob-
ability of a class in terms of a weighted linear interpolation
of the posterior probabilities of the L fields making up doc-
uments in the given domain:

P (Cj|Di) =
L

∑

f=1

λf

[

P (F
Cj

f |F Di
f )

]

(2)

where

F C
f refers to field f in class C

F D
f refers to field f in document D

λf is the weight given to field f

To maintain the probability model, the sum-to-one property
should hold of the weights:

∑L

f=1 λf = 1. An interpolation
scheme is used to find the optimal values for the λ’s. This
is discussed later.

The field-dependent posterior probability is expanded using
Bayes Rule:

P (Cj|Di) =
L

∑

f=1

λf

[

P (F
Cj

f ) • P (F Di
f |F

Cj

f )

P (F Di
f )

]

(3)

P (F
Cj

f ) is the prior probability for field Ff of class Cj . Under

the structure uniformity assumption (4) we take all field
priors within a given class to be equal to the class prior, i.e.
P (Cj).

The denominator, P (F Di
f ), is constant with respect to class

and thus often ignored in Bayesian classification models;
however, the field-level linear interpolation in our model re-
quires true probabilities; thus we retain the denominator.
Dividing by P (F Di

f ) can also be seen as normalising for un-
equal field lengths, i.e. scaling the class-conditional prob-
ability of a field (dependent on the length of the field by
virtue of the fact that probabilistic intersection equates to
multiplication) by a value constant with respect to class but
multiplicatively proportional to the length of the field.

P (F Di
f ) can be expanded to

N
∑

k=1

P (F
Ck
f ) • P (F Di

f |F
Ck
f )

which is simply the sum over all classes of the prior times
the class-conditional probability for the given field.

P (F Di
f |F

Cj

f ) is the language model probability of field f in
document Di given class Cj . In other words, it is the likeli-
hood that the LM chosen to model field f of class Cj gener-
ated the sequence of words composing field f of document
Di (under assumption 2), as represented by the following
formula:

P (F C
f |F D

f ) = P (w1F D
f

, . . . , wKF D
f
|LMF C

f
) (4)

The classification model presented does not restrict the type
of LM used; however, for our experiments we use N-gram



LM’s. The N -gram model is based on the assumption that
the existence of a word at a given position in a sequence
is dependent only on the previous N − 1 words. Thus the
N -gram LM probability for a K-length word sequence can
be defined (with allowances for the initial boundary cases)
as:

PN (w1, . . . , wK) =

K
∏

i=1

P (wi|wi−N+1, . . . , wi−1) (5)

This formula is then specialised for N = 1, 2, 3 . . .. We dis-
cuss LM construction in the next section.

3.3 LM Construction
In theory, the generation of N -gram statistics from nor-
malised frequency counts is relatively simple. However, the
issue of data sparsity (especially in higher-order N -grams)
raises a number of complications. There is a good deal
of literature on such matters, including seminal works by
Katz [7], Jelinek and Mercer [6] and more recently Chen
and Goodman [3], discussing techniques such as discounting
and backing-off to handle sparsity. We build on this work
by introducing two variants of what is to our knowledge a
new discounting function for N -grams, based on analysis
of the use of LM’s for the classification problem within the
proposed framework.

We adopt the basic formalisation for discounting and backing-
off introduced by [7]. In the bigram case, the formula is as
follows:

P (wj |wi) =

{

d(freq(wi, wj))
freq(wi,wj )

freq(wi)
if freq(wi, wj) > C

α(wi)P (wJ) otherwise

(6)

where

d(r) is the discounting function

α(w) is the back-off weight

C is the N -gram cut-off point

For higher-order N -grams the same principles apply, form-
ing a back-off chain from higher to lower-order models. The
N-gram cut-off point, C, can be seen as the threshold be-
low which we consider the number of occurrences too low to
draw robust statistics from. In some cases, we may want to
raise the value of C, as low-frequency higher-order N -gram
entries may be less reliable than their lower-order counter-
parts. The discounting function, d(r) is used to remove some
of the probability mass from those events that have been
observed in the training data, thus making it available to
unobserved events. The discounted probability mass is then
distributed over lower-order distributions with the back-off
weight insuring conformance to the probability model, i.e.
α(wi) = 1 −

∑

P̂ (∗|wi) where P̂ is the discounted bigram
probability. A small probability must also be assigned to
events that remain unobserved at the end of the back-off
chain, i.e. unigram entries that have not been seen at all in
the training data. We can use this to model the likelihood

of encountering unknown words, given a particular class of
documents.

Various discounting schemes have been proposed in the lit-
erature; we implemented linear and Good-Turing for our
experiments, as well as two variants of a new discounting
function, which we will call confidence discounting, based on
the intuition that the amount of probability mass discounted
from a given N -gram entry should be inversely proportional
to the confidence we have in that particular entry (within
certain boundaries), represented by the absolute number of
times the entry was observed in the training data. This idea
can be formulated as follows:

d(r) =
r

R
(ω − φ) + φ (7)

where

R = the number of distinct frequencies

φ = floor for lowest confidence

ω = ceiling for highest confidence

The value returned by the function ranges from φ to ω. R
is an estimate of the highest level of confidence, chosen as
the number of distinct N -gram frequencies because of its
robustness to outliers. φ is chosen to represent the quantity
of probability mass retained in the case of least confidence,
and ω is chosen to represent the quantity of probability mass
retained in the case of highest confidence (i.e. when the N-
gram count approaches R). Note that when r exceeds R,
an adjustment may need to be made to ensure the function
does not return a value greater than one. The function is
linear in the space r by d(r).

A non-linear version can be formulated as follows:

d(r) =
r(R − 1)

R
ω

(r − 1) + 1
φ
(R − r)

(8)

In both cases, the values of the constants φ and ω can ei-
ther be estimated autonomously from the data, or manually,
based on empirical analysis. For our experiments we esti-
mate φ from the training data, and use the LM-dependent
value 1 − n3/T for ω (where n3 is the number of N-grams
occurring 3 times, and T the total number of words encoun-
tered).

The assumption behind the non-linear form (8) is that con-
fidence in a given N -gram should increase significantly after
it occurs the first few times, and then continue to increase
at a slower rate as it is encountered more and more often.
The justification for this assumption is that as if an N -gram
has been seen more than a few times (say around 5-10) it is
likely to be more than just an erroneous or exceptional case,
and our confidence in it should increase rapidly. However,
once an N-gram has been seen many times already, seeing it
a few more times should not imply such a significant increase
in confidence.

Further details of the discounting schemes presented here



can be found in [9], along with graphical depictions of their
behaviour. In the results section, we consider the perfor-
mance of the various discounting schemes in practice.

3.4 Interpolation
The purpose of an interpolation scheme is to optimise the
weights of two or more interpolated components with re-
spect to their performance under some objective function.
The training data is used for this purpose, and a deleted in-
terpolation scheme is often used to derive the most accurate
estimates. Deleted interpolation estimation involves divid-
ing the training data into a number of sections; one section
is held back while the others are used to gather LM statis-
tics. The objective function is then applied to the held-back
section, and the optimal weights calculated. This is iterated
over all sections, with each being held back in turn. Finally,
the optimal weights for each section are averaged to derive
the final estimation. More formally:

1. Divide training data into N sections {S1, . . . , SN}.

2. For each section, i = 1 . . . N

Build LM stats from sections {S1, . . . , SN} \ {Si}

Estimate optimal weights, wi, by using objective
function on Si

3. Derive final weights by averaging {w1, . . . , wN}

In our case, a component is the probability function for a
particular model or set of models given some training data.
We choose the classification function itself (under the F1

evaluation metric) as the objective function, which has the
advantage of precisely reflecting the nature of the prob-
lem. Unfortunately though, the classification function is
non-differentiable, and therefore optimality of the interpo-
lation weights can only be guaranteed for a small number
of components. In our experiments we only optimise two
components (see below) so this is not an issue; however if a
greater number of fields were available, a method of achiev-
ing near-optimality would have to be investigated.

4. DATA
The LingSpam corpus is divided into ten sections, which we
used for ten-fold cross-validation, in line with previous ex-
periments carried out by Androutsopoulos et al. [1] and oth-
ers. Within each email message, only two fields are present:
Subject and Body.

5. EXPERIMENTAL METHOD
The classification approach using the model we propose con-
sists of two basic phases: Firstly the language models are
constructed from the training data, and secondly the de-
cision rule (equation 1) is used to classify the test data.
The results we present were derived from ten-fold cross val-
idation on the LingSpam data (each fold consisting of nine
training sections and one test section). We experimented
with different language model types and present results for
unigram and smoothed bigram models using three different
discounting schemes:

• GT = Good-Turing/Linear mix

• CN = Non-linear Confidence (8)

• CL = Linear Confidence (7)

The values of the interpolation (λ) weights were estimated
using a deleted interpolation scheme, as described above
(3.4), and the values for the LM parameters C and φ (for
the confidence discounting schemes) were estimated from the
training data in a similar manner. To save time, we man-
ually estimated the value for the probability of unknown
events (see 3.2) as 10−8 for unigram LM’s and 10−7 for bi-
grams. Given time, optimising these values for specific LM
configurations would have been preferable. Our experimen-
tal method, then, is as follows:

1. Choose LM type

2. For each cross validatory section, Si ∈ {S1, . . . , S10}

Construct training set: Ti = {S1, . . . , S10} \ {Si}

Estimate parameters Ci and φi (confidence dis-
counting only) using Ti

Estimate interpolation weights Wi using deleted
interpolation scheme on Ti

Construct language models LMi from Ti using Ci

and φi

Classify Si using LMi and Wi, yielding results Ri

Calculate evaluation measures on Ri, yielding Ei

3. Calculate evaluation measure average over {E1, . . . , E10}

As an example of the interpolation scheme, Figure 1 (below)
shows how the performance of the classifier varies over a sin-
gle iteration (using section 1 as the unseen test section and
section 2 as the weight estimation section) as the weights
are varied. It is interesting to note that when the subject
weight reaches 1.0 (i.e. there is no contribution from the
message body LM’s), the unigram classifier performs signif-
icantly better than the bigram classifiers, due to the diminu-
tive amount of subject field data and resultant bigram spar-
sity. A similar pattern can be observed in the greater relative
success of the bigram classifiers at recognising genuine email
when relying only on the evidence from the message body
LM’s (subject weight of 0.0). This accords with the fact
that there is a great deal more genuine email than spam in
the corpus, and thus greater bigram coverage. This evidence
suggests that given more data, higher-order N -gram classi-
fication yields increasingly accurate results, but conversely,
if the data is very sparse, higher-order N -grams become in-
creasingly unreliable. Intuitively, we would expect this to
be the case.

6. EVALUATION AND RESULTS
6.1 Evaluation Measures
In our experiments we report precision (p), recall (r) and
F1 for both classes - SPAM and GEN. These measures are
defined as follows:
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Figure 1: Interpolation scheme - 1 iteration

p(C) =
num(DC → C)

num(∗ → C)
r(C) =

num(DC → C)

num(DC)

F1(C) =
2 × p(C) × r(C)

p(C) + r(C)

where

num(DX → Y ) = num class X docs classified as Y

num(DX) = total number of class X docs

Though not strictly necessary in the two-class case, we re-
port both precision and recall for consistency with the extant
literature. We do not use the WAcc (weighted accuracy)
measure [1] because it involves an arbitrary assessment of
the cost of misclassification and can only be meaningfully
compared to an experimentally specific baseline [9].

6.2 Results
For purposes of comparison, we present results on the LingSpam
corpus from four other classifiers presented in the literature:

• NB. We include the best results reported by Androut-
sopoulos et al. [1] for the Näıve Bayesian approach,
using a lemmatized version of the LingSpam corpus
and the mutual information (MI) metric for feature
selection. They find NB to perform optimally in this
case with a feature set of around 100 elements.

• k-NN variant. From the same paper, we include
the best reported results for a variant of the k-nearest
neighbour algorithm. As for NB, they perform feature
selection based on the MI metric, and achieve optimal
results with a smaller feature set of 50 elements.

• Stacking. This approach combines NB and k-NN in a



Table 1: Comparative results on LingSpam corpus.

GENUINE SPAM
Classifier Recall Precision F1 Recall Precision F1
NB - - - 82.35 99.02 89.92
kNN - - - 88.60 97.40 92.79
Stacking - - - 91.70 96.50 93.93
TreeBoost - - - 97.92 98.33 98.12
LM (unigram) 99.09 99.51 99.29 97.55 95.51 96.52
LM (bigram GT) 99.65 99.71 99.68 98.53 98.27 98.40
LM (bigram CN) 99.77 99.67 99.72 98.35 98.84 98.59
LM (bigram CL) 99.78 99.67 99.73 98.35 98.91 98.63

stack of classifiers. Sakkis et al. [11] experiment with
various configurations. We include the best reported
results from their paper.

• Boosting Trees. We include the best results reported
by Carreras and Marquez [2] using several variants of
the AdaBoost algorithm, based on learning and com-
bining weak rules in a decision tree structure. They
experiment with various tree depths using up to 2500
rules, and report enhanced performance comparative
to previous work.

Table 1 displays results obtained using our classifier, along-
side those previously published using the above classifiers.
The results indicate a clear improvement in performance
when the bigram LM classifier is used, with the various dis-
counting strategies performing similarly well.

In addition to the results above, we experimented with tri-
gram LM’s, but observed a decrease in performance over bi-
grams. We strongly suspect that given the relatively small
amount of training data and the generally ’noisy’ nature of
email text (especially in the SPAM case), >2-gram LM’s do
not generalise well enough to be effective.

7. CONCLUSIONS
We have presented a classification model for semi-structured
documents, using motivated smoothing and interpolation of
higher-order N -gram language models, which outperforms
extant spam filtering techniques on the LingSpam corpus.
We note that the LingSpam corpus is quite small and ho-
mogeneous in nature, and that a larger, more varied corpus
would more effectively represent general email usage. [9]
contains details of such a corpus (GenSpam), and a pro-
cedure used to protect donor privacy by anonymising the
data.

Although the classification model we have presented can be
seen as an extension of classic generative strategies such as
multinomial NB, it is not in fact purely generative, rather it
is a combined model. In the generative tradition, the decision
rule is based on posterior probability modelling and com-
parison, but the interpolation weights are optimised with
respect to the discriminative classification function. There
would in fact be a number of advantages gained by using a
generative objective function for interpolation such as per-
plexity or maximium mutual information (MMI) as they are
both differentiable. This would give us an efficient method of
guaranteeing optimality with regard to component weights;

however, our experiments suggest that neither perplexity
nor MMI correlate well with the classification function, re-
sulting in poor performance. This is certainly a future av-
enue of research though.

On a final note, a more thorough experimental analysis of
the novel discounting schemes we present in this paper would
be beneficial, as the results from this study are inconclusive
in terms of their true performance on a variety of data.
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